Metamath Proof Explorer


Theorem deg1ge

Description: Conversely, a nonzero coefficient sets a lower bound on the degree. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses deg1leb.d 𝐷 = ( deg1𝑅 )
deg1leb.p 𝑃 = ( Poly1𝑅 )
deg1leb.b 𝐵 = ( Base ‘ 𝑃 )
deg1leb.y 0 = ( 0g𝑅 )
deg1leb.a 𝐴 = ( coe1𝐹 )
Assertion deg1ge ( ( 𝐹𝐵𝐺 ∈ ℕ0 ∧ ( 𝐴𝐺 ) ≠ 0 ) → 𝐺 ≤ ( 𝐷𝐹 ) )

Proof

Step Hyp Ref Expression
1 deg1leb.d 𝐷 = ( deg1𝑅 )
2 deg1leb.p 𝑃 = ( Poly1𝑅 )
3 deg1leb.b 𝐵 = ( Base ‘ 𝑃 )
4 deg1leb.y 0 = ( 0g𝑅 )
5 deg1leb.a 𝐴 = ( coe1𝐹 )
6 1 2 3 deg1xrcl ( 𝐹𝐵 → ( 𝐷𝐹 ) ∈ ℝ* )
7 nn0re ( 𝐺 ∈ ℕ0𝐺 ∈ ℝ )
8 7 rexrd ( 𝐺 ∈ ℕ0𝐺 ∈ ℝ* )
9 xrltnle ( ( ( 𝐷𝐹 ) ∈ ℝ*𝐺 ∈ ℝ* ) → ( ( 𝐷𝐹 ) < 𝐺 ↔ ¬ 𝐺 ≤ ( 𝐷𝐹 ) ) )
10 6 8 9 syl2an ( ( 𝐹𝐵𝐺 ∈ ℕ0 ) → ( ( 𝐷𝐹 ) < 𝐺 ↔ ¬ 𝐺 ≤ ( 𝐷𝐹 ) ) )
11 1 2 3 4 5 deg1lt ( ( 𝐹𝐵𝐺 ∈ ℕ0 ∧ ( 𝐷𝐹 ) < 𝐺 ) → ( 𝐴𝐺 ) = 0 )
12 11 3expia ( ( 𝐹𝐵𝐺 ∈ ℕ0 ) → ( ( 𝐷𝐹 ) < 𝐺 → ( 𝐴𝐺 ) = 0 ) )
13 10 12 sylbird ( ( 𝐹𝐵𝐺 ∈ ℕ0 ) → ( ¬ 𝐺 ≤ ( 𝐷𝐹 ) → ( 𝐴𝐺 ) = 0 ) )
14 13 necon1ad ( ( 𝐹𝐵𝐺 ∈ ℕ0 ) → ( ( 𝐴𝐺 ) ≠ 0𝐺 ≤ ( 𝐷𝐹 ) ) )
15 14 3impia ( ( 𝐹𝐵𝐺 ∈ ℕ0 ∧ ( 𝐴𝐺 ) ≠ 0 ) → 𝐺 ≤ ( 𝐷𝐹 ) )