| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fidmfisupp.1 |
|- ( ph -> F : D --> R ) |
| 2 |
|
fidmfisupp.2 |
|- ( ph -> D e. Fin ) |
| 3 |
|
fidmfisupp.3 |
|- ( ph -> Z e. V ) |
| 4 |
1 2
|
fexd |
|- ( ph -> F e. _V ) |
| 5 |
|
suppimacnv |
|- ( ( F e. _V /\ Z e. V ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
| 6 |
4 3 5
|
syl2anc |
|- ( ph -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
| 7 |
2 1
|
fisuppfi |
|- ( ph -> ( `' F " ( _V \ { Z } ) ) e. Fin ) |
| 8 |
6 7
|
eqeltrd |
|- ( ph -> ( F supp Z ) e. Fin ) |
| 9 |
1
|
ffund |
|- ( ph -> Fun F ) |
| 10 |
|
funisfsupp |
|- ( ( Fun F /\ F e. _V /\ Z e. V ) -> ( F finSupp Z <-> ( F supp Z ) e. Fin ) ) |
| 11 |
9 4 3 10
|
syl3anc |
|- ( ph -> ( F finSupp Z <-> ( F supp Z ) e. Fin ) ) |
| 12 |
8 11
|
mpbird |
|- ( ph -> F finSupp Z ) |