| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evl1deg1.1 |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
evl1deg1.2 |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
| 3 |
|
evl1deg1.3 |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 4 |
|
evl1deg1.4 |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 5 |
|
evl1deg1.5 |
⊢ · = ( .r ‘ 𝑅 ) |
| 6 |
|
evl1deg1.6 |
⊢ + = ( +g ‘ 𝑅 ) |
| 7 |
|
evl1deg2.p |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 8 |
|
evl1deg2.f |
⊢ 𝐹 = ( coe1 ‘ 𝑀 ) |
| 9 |
|
evl1deg2.e |
⊢ 𝐸 = ( deg1 ‘ 𝑅 ) |
| 10 |
|
evl1deg2.a |
⊢ 𝐴 = ( 𝐹 ‘ 2 ) |
| 11 |
|
evl1deg2.b |
⊢ 𝐵 = ( 𝐹 ‘ 1 ) |
| 12 |
|
evl1deg2.c |
⊢ 𝐶 = ( 𝐹 ‘ 0 ) |
| 13 |
|
evl1deg2.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 14 |
|
evl1deg2.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝑈 ) |
| 15 |
|
evl1deg2.1 |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑀 ) = 2 ) |
| 16 |
|
evl1deg2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
| 17 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑘 ↑ 𝑥 ) = ( 𝑘 ↑ 𝑋 ) ) |
| 18 |
17
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) |
| 19 |
18
|
mpteq2dv |
⊢ ( 𝑥 = 𝑋 → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) |
| 20 |
19
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 21 |
2 1 3 4 13 14 5 7 8
|
evl1fpws |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) = ( 𝑥 ∈ 𝐾 ↦ ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ) ) |
| 22 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ∈ V ) |
| 23 |
20 21 16 22
|
fvmptd4 |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑋 ) = ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 24 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 25 |
13
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 26 |
25
|
ringcmnd |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 27 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 28 |
27
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
| 29 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 30 |
8 4 1 3
|
coe1fvalcl |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐾 ) |
| 31 |
14 30
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐾 ) |
| 32 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 33 |
32 3
|
mgpbas |
⊢ 𝐾 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 34 |
32
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 35 |
25 34
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 38 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑋 ∈ 𝐾 ) |
| 39 |
33 7 36 37 38
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ↑ 𝑋 ) ∈ 𝐾 ) |
| 40 |
3 5 29 31 39
|
ringcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐾 ) |
| 41 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ V ) |
| 42 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) |
| 43 |
|
oveq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ↑ 𝑋 ) = ( 𝑗 ↑ 𝑋 ) ) |
| 44 |
42 43
|
oveq12d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) ) |
| 45 |
|
breq1 |
⊢ ( 𝑖 = ( 𝐸 ‘ 𝑀 ) → ( 𝑖 < 𝑗 ↔ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) ) |
| 46 |
45
|
imbi1d |
⊢ ( 𝑖 = ( 𝐸 ‘ 𝑀 ) → ( ( 𝑖 < 𝑗 → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ↔ ( ( 𝐸 ‘ 𝑀 ) < 𝑗 → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 47 |
46
|
ralbidv |
⊢ ( 𝑖 = ( 𝐸 ‘ 𝑀 ) → ( ∀ 𝑗 ∈ ℕ0 ( 𝑖 < 𝑗 → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ↔ ∀ 𝑗 ∈ ℕ0 ( ( 𝐸 ‘ 𝑀 ) < 𝑗 → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 48 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 49 |
48
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ0 ) |
| 50 |
15 49
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑀 ) ∈ ℕ0 ) |
| 51 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → 𝑀 ∈ 𝑈 ) |
| 52 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → 𝑗 ∈ ℕ0 ) |
| 53 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → ( 𝐸 ‘ 𝑀 ) < 𝑗 ) |
| 54 |
9 1 4 24 8
|
deg1lt |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 𝑗 ∈ ℕ0 ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → ( 𝐹 ‘ 𝑗 ) = ( 0g ‘ 𝑅 ) ) |
| 55 |
51 52 53 54
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → ( 𝐹 ‘ 𝑗 ) = ( 0g ‘ 𝑅 ) ) |
| 56 |
55
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( ( 0g ‘ 𝑅 ) · ( 𝑗 ↑ 𝑋 ) ) ) |
| 57 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → 𝑅 ∈ Ring ) |
| 58 |
57 34
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 59 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → 𝑋 ∈ 𝐾 ) |
| 60 |
33 7 58 52 59
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → ( 𝑗 ↑ 𝑋 ) ∈ 𝐾 ) |
| 61 |
3 5 24 57 60
|
ringlzd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → ( ( 0g ‘ 𝑅 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) |
| 62 |
56 61
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) |
| 63 |
62
|
ex |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐸 ‘ 𝑀 ) < 𝑗 → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 64 |
63
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ℕ0 ( ( 𝐸 ‘ 𝑀 ) < 𝑗 → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 65 |
47 50 64
|
rspcedvdw |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ℕ0 ∀ 𝑗 ∈ ℕ0 ( 𝑖 < 𝑗 → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 66 |
41 40 44 65
|
mptnn0fsuppd |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 67 |
|
fzouzdisj |
⊢ ( ( 0 ..^ 3 ) ∩ ( ℤ≥ ‘ 3 ) ) = ∅ |
| 68 |
67
|
a1i |
⊢ ( 𝜑 → ( ( 0 ..^ 3 ) ∩ ( ℤ≥ ‘ 3 ) ) = ∅ ) |
| 69 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 70 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 71 |
70 69
|
eleqtri |
⊢ 3 ∈ ( ℤ≥ ‘ 0 ) |
| 72 |
|
fzouzsplit |
⊢ ( 3 ∈ ( ℤ≥ ‘ 0 ) → ( ℤ≥ ‘ 0 ) = ( ( 0 ..^ 3 ) ∪ ( ℤ≥ ‘ 3 ) ) ) |
| 73 |
71 72
|
ax-mp |
⊢ ( ℤ≥ ‘ 0 ) = ( ( 0 ..^ 3 ) ∪ ( ℤ≥ ‘ 3 ) ) |
| 74 |
69 73
|
eqtri |
⊢ ℕ0 = ( ( 0 ..^ 3 ) ∪ ( ℤ≥ ‘ 3 ) ) |
| 75 |
74
|
a1i |
⊢ ( 𝜑 → ℕ0 = ( ( 0 ..^ 3 ) ∪ ( ℤ≥ ‘ 3 ) ) ) |
| 76 |
3 24 6 26 28 40 66 68 75
|
gsumsplit2 |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) = ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 3 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) + ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 3 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
| 77 |
|
fzo0to3tp |
⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
| 78 |
77
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 3 ) = { 0 , 1 , 2 } ) |
| 79 |
78
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ..^ 3 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑘 ∈ { 0 , 1 , 2 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) |
| 80 |
79
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 3 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 , 2 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 81 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → 𝑀 ∈ 𝑈 ) |
| 82 |
|
uzss |
⊢ ( 3 ∈ ( ℤ≥ ‘ 0 ) → ( ℤ≥ ‘ 3 ) ⊆ ( ℤ≥ ‘ 0 ) ) |
| 83 |
71 82
|
ax-mp |
⊢ ( ℤ≥ ‘ 3 ) ⊆ ( ℤ≥ ‘ 0 ) |
| 84 |
83 69
|
sseqtrri |
⊢ ( ℤ≥ ‘ 3 ) ⊆ ℕ0 |
| 85 |
84
|
a1i |
⊢ ( 𝜑 → ( ℤ≥ ‘ 3 ) ⊆ ℕ0 ) |
| 86 |
85
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → 𝑘 ∈ ℕ0 ) |
| 87 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐸 ‘ 𝑀 ) = 2 ) |
| 88 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
| 89 |
88
|
fveq2i |
⊢ ( ℤ≥ ‘ ( 2 + 1 ) ) = ( ℤ≥ ‘ 3 ) |
| 90 |
89
|
eleq2i |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( 2 + 1 ) ) ↔ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) |
| 91 |
|
2z |
⊢ 2 ∈ ℤ |
| 92 |
|
eluzp1l |
⊢ ( ( 2 ∈ ℤ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 2 + 1 ) ) ) → 2 < 𝑘 ) |
| 93 |
91 92
|
mpan |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( 2 + 1 ) ) → 2 < 𝑘 ) |
| 94 |
90 93
|
sylbir |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 3 ) → 2 < 𝑘 ) |
| 95 |
94
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → 2 < 𝑘 ) |
| 96 |
87 95
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐸 ‘ 𝑀 ) < 𝑘 ) |
| 97 |
9 1 4 24 8
|
deg1lt |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 𝑘 ∈ ℕ0 ∧ ( 𝐸 ‘ 𝑀 ) < 𝑘 ) → ( 𝐹 ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) |
| 98 |
81 86 96 97
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) |
| 99 |
98
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) = ( ( 0g ‘ 𝑅 ) · ( 𝑘 ↑ 𝑋 ) ) ) |
| 100 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → 𝑅 ∈ Ring ) |
| 101 |
100 34
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 102 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → 𝑋 ∈ 𝐾 ) |
| 103 |
33 7 101 86 102
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝑘 ↑ 𝑋 ) ∈ 𝐾 ) |
| 104 |
3 5 24 100 103
|
ringlzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 0g ‘ 𝑅 ) · ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) |
| 105 |
99 104
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) |
| 106 |
105
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ ( ℤ≥ ‘ 3 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑘 ∈ ( ℤ≥ ‘ 3 ) ↦ ( 0g ‘ 𝑅 ) ) ) |
| 107 |
106
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 3 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 3 ) ↦ ( 0g ‘ 𝑅 ) ) ) ) |
| 108 |
13
|
crnggrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 109 |
108
|
grpmndd |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 110 |
|
fvexd |
⊢ ( 𝜑 → ( ℤ≥ ‘ 3 ) ∈ V ) |
| 111 |
24
|
gsumz |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( ℤ≥ ‘ 3 ) ∈ V ) → ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 3 ) ↦ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 112 |
109 110 111
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 3 ) ↦ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 113 |
107 112
|
eqtrd |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 3 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 114 |
80 113
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 3 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) + ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 3 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 , 2 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) + ( 0g ‘ 𝑅 ) ) ) |
| 115 |
|
tpex |
⊢ { 0 , 1 , 2 } ∈ V |
| 116 |
115
|
a1i |
⊢ ( 𝜑 → { 0 , 1 , 2 } ∈ V ) |
| 117 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 0 , 1 , 2 } ) → 𝑅 ∈ Ring ) |
| 118 |
8 4 1 3
|
coe1f |
⊢ ( 𝑀 ∈ 𝑈 → 𝐹 : ℕ0 ⟶ 𝐾 ) |
| 119 |
14 118
|
syl |
⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ 𝐾 ) |
| 120 |
119
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 0 , 1 , 2 } ) → 𝐹 : ℕ0 ⟶ 𝐾 ) |
| 121 |
|
fzo0ssnn0 |
⊢ ( 0 ..^ 3 ) ⊆ ℕ0 |
| 122 |
78 121
|
eqsstrrdi |
⊢ ( 𝜑 → { 0 , 1 , 2 } ⊆ ℕ0 ) |
| 123 |
122
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 0 , 1 , 2 } ) → 𝑘 ∈ ℕ0 ) |
| 124 |
120 123
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 0 , 1 , 2 } ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐾 ) |
| 125 |
123 39
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 0 , 1 , 2 } ) → ( 𝑘 ↑ 𝑋 ) ∈ 𝐾 ) |
| 126 |
3 5 117 124 125
|
ringcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 0 , 1 , 2 } ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐾 ) |
| 127 |
126
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ { 0 , 1 , 2 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) : { 0 , 1 , 2 } ⟶ 𝐾 ) |
| 128 |
|
fzofi |
⊢ ( 0 ..^ 3 ) ∈ Fin |
| 129 |
78 128
|
eqeltrrdi |
⊢ ( 𝜑 → { 0 , 1 , 2 } ∈ Fin ) |
| 130 |
127 129 41
|
fidmfisupp |
⊢ ( 𝜑 → ( 𝑘 ∈ { 0 , 1 , 2 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 131 |
3 24 26 116 127 130
|
gsumcl |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 , 2 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ∈ 𝐾 ) |
| 132 |
3 6 24 108 131
|
grpridd |
⊢ ( 𝜑 → ( ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 , 2 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) + ( 0g ‘ 𝑅 ) ) = ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 , 2 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 133 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 0 ) ) |
| 134 |
133 12
|
eqtr4di |
⊢ ( 𝑘 = 0 → ( 𝐹 ‘ 𝑘 ) = 𝐶 ) |
| 135 |
|
oveq1 |
⊢ ( 𝑘 = 0 → ( 𝑘 ↑ 𝑋 ) = ( 0 ↑ 𝑋 ) ) |
| 136 |
134 135
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) = ( 𝐶 · ( 0 ↑ 𝑋 ) ) ) |
| 137 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 1 ) ) |
| 138 |
137 11
|
eqtr4di |
⊢ ( 𝑘 = 1 → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) |
| 139 |
|
oveq1 |
⊢ ( 𝑘 = 1 → ( 𝑘 ↑ 𝑋 ) = ( 1 ↑ 𝑋 ) ) |
| 140 |
138 139
|
oveq12d |
⊢ ( 𝑘 = 1 → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) = ( 𝐵 · ( 1 ↑ 𝑋 ) ) ) |
| 141 |
|
fveq2 |
⊢ ( 𝑘 = 2 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 2 ) ) |
| 142 |
141 10
|
eqtr4di |
⊢ ( 𝑘 = 2 → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
| 143 |
|
oveq1 |
⊢ ( 𝑘 = 2 → ( 𝑘 ↑ 𝑋 ) = ( 2 ↑ 𝑋 ) ) |
| 144 |
142 143
|
oveq12d |
⊢ ( 𝑘 = 2 → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) = ( 𝐴 · ( 2 ↑ 𝑋 ) ) ) |
| 145 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 146 |
145
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 147 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 148 |
147
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
| 149 |
|
0ne1 |
⊢ 0 ≠ 1 |
| 150 |
149
|
a1i |
⊢ ( 𝜑 → 0 ≠ 1 ) |
| 151 |
|
1ne2 |
⊢ 1 ≠ 2 |
| 152 |
151
|
a1i |
⊢ ( 𝜑 → 1 ≠ 2 ) |
| 153 |
|
0ne2 |
⊢ 0 ≠ 2 |
| 154 |
153
|
a1i |
⊢ ( 𝜑 → 0 ≠ 2 ) |
| 155 |
8 4 1 3
|
coe1fvalcl |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 0 ∈ ℕ0 ) → ( 𝐹 ‘ 0 ) ∈ 𝐾 ) |
| 156 |
14 145 155
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ∈ 𝐾 ) |
| 157 |
12 156
|
eqeltrid |
⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) |
| 158 |
33 7 35 146 16
|
mulgnn0cld |
⊢ ( 𝜑 → ( 0 ↑ 𝑋 ) ∈ 𝐾 ) |
| 159 |
3 5 25 157 158
|
ringcld |
⊢ ( 𝜑 → ( 𝐶 · ( 0 ↑ 𝑋 ) ) ∈ 𝐾 ) |
| 160 |
8 4 1 3
|
coe1fvalcl |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 1 ∈ ℕ0 ) → ( 𝐹 ‘ 1 ) ∈ 𝐾 ) |
| 161 |
14 147 160
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ 𝐾 ) |
| 162 |
11 161
|
eqeltrid |
⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) |
| 163 |
33 7 35 148 16
|
mulgnn0cld |
⊢ ( 𝜑 → ( 1 ↑ 𝑋 ) ∈ 𝐾 ) |
| 164 |
3 5 25 162 163
|
ringcld |
⊢ ( 𝜑 → ( 𝐵 · ( 1 ↑ 𝑋 ) ) ∈ 𝐾 ) |
| 165 |
8 4 1 3
|
coe1fvalcl |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 2 ∈ ℕ0 ) → ( 𝐹 ‘ 2 ) ∈ 𝐾 ) |
| 166 |
14 48 165
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 2 ) ∈ 𝐾 ) |
| 167 |
10 166
|
eqeltrid |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
| 168 |
33 7 35 49 16
|
mulgnn0cld |
⊢ ( 𝜑 → ( 2 ↑ 𝑋 ) ∈ 𝐾 ) |
| 169 |
3 5 25 167 168
|
ringcld |
⊢ ( 𝜑 → ( 𝐴 · ( 2 ↑ 𝑋 ) ) ∈ 𝐾 ) |
| 170 |
3 6 136 140 144 26 146 148 49 150 152 154 159 164 169
|
gsumtp |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 , 2 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) = ( ( ( 𝐶 · ( 0 ↑ 𝑋 ) ) + ( 𝐵 · ( 1 ↑ 𝑋 ) ) ) + ( 𝐴 · ( 2 ↑ 𝑋 ) ) ) ) |
| 171 |
3 6 108 159 164
|
grpcld |
⊢ ( 𝜑 → ( ( 𝐶 · ( 0 ↑ 𝑋 ) ) + ( 𝐵 · ( 1 ↑ 𝑋 ) ) ) ∈ 𝐾 ) |
| 172 |
3 6
|
cmncom |
⊢ ( ( 𝑅 ∈ CMnd ∧ ( ( 𝐶 · ( 0 ↑ 𝑋 ) ) + ( 𝐵 · ( 1 ↑ 𝑋 ) ) ) ∈ 𝐾 ∧ ( 𝐴 · ( 2 ↑ 𝑋 ) ) ∈ 𝐾 ) → ( ( ( 𝐶 · ( 0 ↑ 𝑋 ) ) + ( 𝐵 · ( 1 ↑ 𝑋 ) ) ) + ( 𝐴 · ( 2 ↑ 𝑋 ) ) ) = ( ( 𝐴 · ( 2 ↑ 𝑋 ) ) + ( ( 𝐶 · ( 0 ↑ 𝑋 ) ) + ( 𝐵 · ( 1 ↑ 𝑋 ) ) ) ) ) |
| 173 |
26 171 169 172
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐶 · ( 0 ↑ 𝑋 ) ) + ( 𝐵 · ( 1 ↑ 𝑋 ) ) ) + ( 𝐴 · ( 2 ↑ 𝑋 ) ) ) = ( ( 𝐴 · ( 2 ↑ 𝑋 ) ) + ( ( 𝐶 · ( 0 ↑ 𝑋 ) ) + ( 𝐵 · ( 1 ↑ 𝑋 ) ) ) ) ) |
| 174 |
3 6
|
cmncom |
⊢ ( ( 𝑅 ∈ CMnd ∧ ( 𝐶 · ( 0 ↑ 𝑋 ) ) ∈ 𝐾 ∧ ( 𝐵 · ( 1 ↑ 𝑋 ) ) ∈ 𝐾 ) → ( ( 𝐶 · ( 0 ↑ 𝑋 ) ) + ( 𝐵 · ( 1 ↑ 𝑋 ) ) ) = ( ( 𝐵 · ( 1 ↑ 𝑋 ) ) + ( 𝐶 · ( 0 ↑ 𝑋 ) ) ) ) |
| 175 |
26 159 164 174
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐶 · ( 0 ↑ 𝑋 ) ) + ( 𝐵 · ( 1 ↑ 𝑋 ) ) ) = ( ( 𝐵 · ( 1 ↑ 𝑋 ) ) + ( 𝐶 · ( 0 ↑ 𝑋 ) ) ) ) |
| 176 |
33 7
|
mulg1 |
⊢ ( 𝑋 ∈ 𝐾 → ( 1 ↑ 𝑋 ) = 𝑋 ) |
| 177 |
16 176
|
syl |
⊢ ( 𝜑 → ( 1 ↑ 𝑋 ) = 𝑋 ) |
| 178 |
177
|
oveq2d |
⊢ ( 𝜑 → ( 𝐵 · ( 1 ↑ 𝑋 ) ) = ( 𝐵 · 𝑋 ) ) |
| 179 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 180 |
32 179
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 181 |
33 180 7
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐾 → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
| 182 |
16 181
|
syl |
⊢ ( 𝜑 → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
| 183 |
182
|
oveq2d |
⊢ ( 𝜑 → ( 𝐶 · ( 0 ↑ 𝑋 ) ) = ( 𝐶 · ( 1r ‘ 𝑅 ) ) ) |
| 184 |
3 5 179 25 157
|
ringridmd |
⊢ ( 𝜑 → ( 𝐶 · ( 1r ‘ 𝑅 ) ) = 𝐶 ) |
| 185 |
183 184
|
eqtrd |
⊢ ( 𝜑 → ( 𝐶 · ( 0 ↑ 𝑋 ) ) = 𝐶 ) |
| 186 |
178 185
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐵 · ( 1 ↑ 𝑋 ) ) + ( 𝐶 · ( 0 ↑ 𝑋 ) ) ) = ( ( 𝐵 · 𝑋 ) + 𝐶 ) ) |
| 187 |
175 186
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐶 · ( 0 ↑ 𝑋 ) ) + ( 𝐵 · ( 1 ↑ 𝑋 ) ) ) = ( ( 𝐵 · 𝑋 ) + 𝐶 ) ) |
| 188 |
187
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 2 ↑ 𝑋 ) ) + ( ( 𝐶 · ( 0 ↑ 𝑋 ) ) + ( 𝐵 · ( 1 ↑ 𝑋 ) ) ) ) = ( ( 𝐴 · ( 2 ↑ 𝑋 ) ) + ( ( 𝐵 · 𝑋 ) + 𝐶 ) ) ) |
| 189 |
170 173 188
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 , 2 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) = ( ( 𝐴 · ( 2 ↑ 𝑋 ) ) + ( ( 𝐵 · 𝑋 ) + 𝐶 ) ) ) |
| 190 |
114 132 189
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 3 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) + ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 3 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) = ( ( 𝐴 · ( 2 ↑ 𝑋 ) ) + ( ( 𝐵 · 𝑋 ) + 𝐶 ) ) ) |
| 191 |
23 76 190
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑋 ) = ( ( 𝐴 · ( 2 ↑ 𝑋 ) ) + ( ( 𝐵 · 𝑋 ) + 𝐶 ) ) ) |