Step |
Hyp |
Ref |
Expression |
1 |
|
evl1deg1.1 |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
evl1deg1.2 |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
3 |
|
evl1deg1.3 |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
4 |
|
evl1deg1.4 |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
5 |
|
evl1deg1.5 |
⊢ · = ( .r ‘ 𝑅 ) |
6 |
|
evl1deg1.6 |
⊢ + = ( +g ‘ 𝑅 ) |
7 |
|
evl1deg2.p |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) |
8 |
|
evl1deg2.f |
⊢ 𝐹 = ( coe1 ‘ 𝑀 ) |
9 |
|
evl1deg2.e |
⊢ 𝐸 = ( deg1 ‘ 𝑅 ) |
10 |
|
evl1deg2.a |
⊢ 𝐴 = ( 𝐹 ‘ 2 ) |
11 |
|
evl1deg2.b |
⊢ 𝐵 = ( 𝐹 ‘ 1 ) |
12 |
|
evl1deg2.c |
⊢ 𝐶 = ( 𝐹 ‘ 0 ) |
13 |
|
evl1deg2.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
14 |
|
evl1deg2.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝑈 ) |
15 |
|
evl1deg2.1 |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑀 ) = 2 ) |
16 |
|
evl1deg2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
17 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑘 ↑ 𝑥 ) = ( 𝑘 ↑ 𝑋 ) ) |
18 |
17
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) |
19 |
18
|
mpteq2dv |
⊢ ( 𝑥 = 𝑋 → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) |
20 |
19
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
21 |
2 1 3 4 13 14 5 7 8
|
evl1fpws |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) = ( 𝑥 ∈ 𝐾 ↦ ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ) ) |
22 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ∈ V ) |
23 |
20 21 16 22
|
fvmptd4 |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑋 ) = ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
24 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
25 |
13
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
26 |
25
|
ringcmnd |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
27 |
|
nn0ex |
⊢ ℕ0 ∈ V |
28 |
27
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
29 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
30 |
8 4 1 3
|
coe1fvalcl |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐾 ) |
31 |
14 30
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐾 ) |
32 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
33 |
32 3
|
mgpbas |
⊢ 𝐾 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
34 |
32
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
35 |
25 34
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
38 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑋 ∈ 𝐾 ) |
39 |
33 7 36 37 38
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ↑ 𝑋 ) ∈ 𝐾 ) |
40 |
3 5 29 31 39
|
ringcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐾 ) |
41 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ V ) |
42 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) |
43 |
|
oveq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ↑ 𝑋 ) = ( 𝑗 ↑ 𝑋 ) ) |
44 |
42 43
|
oveq12d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) ) |
45 |
|
breq1 |
⊢ ( 𝑖 = ( 𝐸 ‘ 𝑀 ) → ( 𝑖 < 𝑗 ↔ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) ) |
46 |
45
|
imbi1d |
⊢ ( 𝑖 = ( 𝐸 ‘ 𝑀 ) → ( ( 𝑖 < 𝑗 → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ↔ ( ( 𝐸 ‘ 𝑀 ) < 𝑗 → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
47 |
46
|
ralbidv |
⊢ ( 𝑖 = ( 𝐸 ‘ 𝑀 ) → ( ∀ 𝑗 ∈ ℕ0 ( 𝑖 < 𝑗 → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ↔ ∀ 𝑗 ∈ ℕ0 ( ( 𝐸 ‘ 𝑀 ) < 𝑗 → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
48 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
49 |
48
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ0 ) |
50 |
15 49
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑀 ) ∈ ℕ0 ) |
51 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → 𝑀 ∈ 𝑈 ) |
52 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → 𝑗 ∈ ℕ0 ) |
53 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → ( 𝐸 ‘ 𝑀 ) < 𝑗 ) |
54 |
9 1 4 24 8
|
deg1lt |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 𝑗 ∈ ℕ0 ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → ( 𝐹 ‘ 𝑗 ) = ( 0g ‘ 𝑅 ) ) |
55 |
51 52 53 54
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → ( 𝐹 ‘ 𝑗 ) = ( 0g ‘ 𝑅 ) ) |
56 |
55
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( ( 0g ‘ 𝑅 ) · ( 𝑗 ↑ 𝑋 ) ) ) |
57 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → 𝑅 ∈ Ring ) |
58 |
57 34
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
59 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → 𝑋 ∈ 𝐾 ) |
60 |
33 7 58 52 59
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → ( 𝑗 ↑ 𝑋 ) ∈ 𝐾 ) |
61 |
3 5 24 57 60
|
ringlzd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → ( ( 0g ‘ 𝑅 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) |
62 |
56 61
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) |
63 |
62
|
ex |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐸 ‘ 𝑀 ) < 𝑗 → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ) |
64 |
63
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ℕ0 ( ( 𝐸 ‘ 𝑀 ) < 𝑗 → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ) |
65 |
47 50 64
|
rspcedvdw |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ℕ0 ∀ 𝑗 ∈ ℕ0 ( 𝑖 < 𝑗 → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ) |
66 |
41 40 44 65
|
mptnn0fsuppd |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
67 |
|
fzouzdisj |
⊢ ( ( 0 ..^ 3 ) ∩ ( ℤ≥ ‘ 3 ) ) = ∅ |
68 |
67
|
a1i |
⊢ ( 𝜑 → ( ( 0 ..^ 3 ) ∩ ( ℤ≥ ‘ 3 ) ) = ∅ ) |
69 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
70 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
71 |
70 69
|
eleqtri |
⊢ 3 ∈ ( ℤ≥ ‘ 0 ) |
72 |
|
fzouzsplit |
⊢ ( 3 ∈ ( ℤ≥ ‘ 0 ) → ( ℤ≥ ‘ 0 ) = ( ( 0 ..^ 3 ) ∪ ( ℤ≥ ‘ 3 ) ) ) |
73 |
71 72
|
ax-mp |
⊢ ( ℤ≥ ‘ 0 ) = ( ( 0 ..^ 3 ) ∪ ( ℤ≥ ‘ 3 ) ) |
74 |
69 73
|
eqtri |
⊢ ℕ0 = ( ( 0 ..^ 3 ) ∪ ( ℤ≥ ‘ 3 ) ) |
75 |
74
|
a1i |
⊢ ( 𝜑 → ℕ0 = ( ( 0 ..^ 3 ) ∪ ( ℤ≥ ‘ 3 ) ) ) |
76 |
3 24 6 26 28 40 66 68 75
|
gsumsplit2 |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) = ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 3 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) + ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 3 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
77 |
|
fzo0to3tp |
⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
78 |
77
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 3 ) = { 0 , 1 , 2 } ) |
79 |
78
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ..^ 3 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑘 ∈ { 0 , 1 , 2 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) |
80 |
79
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 3 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 , 2 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
81 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → 𝑀 ∈ 𝑈 ) |
82 |
|
uzss |
⊢ ( 3 ∈ ( ℤ≥ ‘ 0 ) → ( ℤ≥ ‘ 3 ) ⊆ ( ℤ≥ ‘ 0 ) ) |
83 |
71 82
|
ax-mp |
⊢ ( ℤ≥ ‘ 3 ) ⊆ ( ℤ≥ ‘ 0 ) |
84 |
83 69
|
sseqtrri |
⊢ ( ℤ≥ ‘ 3 ) ⊆ ℕ0 |
85 |
84
|
a1i |
⊢ ( 𝜑 → ( ℤ≥ ‘ 3 ) ⊆ ℕ0 ) |
86 |
85
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → 𝑘 ∈ ℕ0 ) |
87 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐸 ‘ 𝑀 ) = 2 ) |
88 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
89 |
88
|
fveq2i |
⊢ ( ℤ≥ ‘ ( 2 + 1 ) ) = ( ℤ≥ ‘ 3 ) |
90 |
89
|
eleq2i |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( 2 + 1 ) ) ↔ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) |
91 |
|
2z |
⊢ 2 ∈ ℤ |
92 |
|
eluzp1l |
⊢ ( ( 2 ∈ ℤ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 2 + 1 ) ) ) → 2 < 𝑘 ) |
93 |
91 92
|
mpan |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( 2 + 1 ) ) → 2 < 𝑘 ) |
94 |
90 93
|
sylbir |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 3 ) → 2 < 𝑘 ) |
95 |
94
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → 2 < 𝑘 ) |
96 |
87 95
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐸 ‘ 𝑀 ) < 𝑘 ) |
97 |
9 1 4 24 8
|
deg1lt |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 𝑘 ∈ ℕ0 ∧ ( 𝐸 ‘ 𝑀 ) < 𝑘 ) → ( 𝐹 ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) |
98 |
81 86 96 97
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) |
99 |
98
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) = ( ( 0g ‘ 𝑅 ) · ( 𝑘 ↑ 𝑋 ) ) ) |
100 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → 𝑅 ∈ Ring ) |
101 |
100 34
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
102 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → 𝑋 ∈ 𝐾 ) |
103 |
33 7 101 86 102
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝑘 ↑ 𝑋 ) ∈ 𝐾 ) |
104 |
3 5 24 100 103
|
ringlzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 0g ‘ 𝑅 ) · ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) |
105 |
99 104
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) |
106 |
105
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ ( ℤ≥ ‘ 3 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑘 ∈ ( ℤ≥ ‘ 3 ) ↦ ( 0g ‘ 𝑅 ) ) ) |
107 |
106
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 3 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 3 ) ↦ ( 0g ‘ 𝑅 ) ) ) ) |
108 |
13
|
crnggrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
109 |
108
|
grpmndd |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
110 |
|
fvexd |
⊢ ( 𝜑 → ( ℤ≥ ‘ 3 ) ∈ V ) |
111 |
24
|
gsumz |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( ℤ≥ ‘ 3 ) ∈ V ) → ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 3 ) ↦ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
112 |
109 110 111
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 3 ) ↦ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
113 |
107 112
|
eqtrd |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 3 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 0g ‘ 𝑅 ) ) |
114 |
80 113
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 3 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) + ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 3 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 , 2 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) + ( 0g ‘ 𝑅 ) ) ) |
115 |
|
tpex |
⊢ { 0 , 1 , 2 } ∈ V |
116 |
115
|
a1i |
⊢ ( 𝜑 → { 0 , 1 , 2 } ∈ V ) |
117 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 0 , 1 , 2 } ) → 𝑅 ∈ Ring ) |
118 |
8 4 1 3
|
coe1f |
⊢ ( 𝑀 ∈ 𝑈 → 𝐹 : ℕ0 ⟶ 𝐾 ) |
119 |
14 118
|
syl |
⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ 𝐾 ) |
120 |
119
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 0 , 1 , 2 } ) → 𝐹 : ℕ0 ⟶ 𝐾 ) |
121 |
|
fzo0ssnn0 |
⊢ ( 0 ..^ 3 ) ⊆ ℕ0 |
122 |
78 121
|
eqsstrrdi |
⊢ ( 𝜑 → { 0 , 1 , 2 } ⊆ ℕ0 ) |
123 |
122
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 0 , 1 , 2 } ) → 𝑘 ∈ ℕ0 ) |
124 |
120 123
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 0 , 1 , 2 } ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐾 ) |
125 |
123 39
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 0 , 1 , 2 } ) → ( 𝑘 ↑ 𝑋 ) ∈ 𝐾 ) |
126 |
3 5 117 124 125
|
ringcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 0 , 1 , 2 } ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐾 ) |
127 |
126
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ { 0 , 1 , 2 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) : { 0 , 1 , 2 } ⟶ 𝐾 ) |
128 |
|
fzofi |
⊢ ( 0 ..^ 3 ) ∈ Fin |
129 |
78 128
|
eqeltrrdi |
⊢ ( 𝜑 → { 0 , 1 , 2 } ∈ Fin ) |
130 |
127 129 41
|
fidmfisupp |
⊢ ( 𝜑 → ( 𝑘 ∈ { 0 , 1 , 2 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
131 |
3 24 26 116 127 130
|
gsumcl |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 , 2 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ∈ 𝐾 ) |
132 |
3 6 24 108 131
|
grpridd |
⊢ ( 𝜑 → ( ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 , 2 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) + ( 0g ‘ 𝑅 ) ) = ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 , 2 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
133 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 0 ) ) |
134 |
133 12
|
eqtr4di |
⊢ ( 𝑘 = 0 → ( 𝐹 ‘ 𝑘 ) = 𝐶 ) |
135 |
|
oveq1 |
⊢ ( 𝑘 = 0 → ( 𝑘 ↑ 𝑋 ) = ( 0 ↑ 𝑋 ) ) |
136 |
134 135
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) = ( 𝐶 · ( 0 ↑ 𝑋 ) ) ) |
137 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 1 ) ) |
138 |
137 11
|
eqtr4di |
⊢ ( 𝑘 = 1 → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) |
139 |
|
oveq1 |
⊢ ( 𝑘 = 1 → ( 𝑘 ↑ 𝑋 ) = ( 1 ↑ 𝑋 ) ) |
140 |
138 139
|
oveq12d |
⊢ ( 𝑘 = 1 → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) = ( 𝐵 · ( 1 ↑ 𝑋 ) ) ) |
141 |
|
fveq2 |
⊢ ( 𝑘 = 2 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 2 ) ) |
142 |
141 10
|
eqtr4di |
⊢ ( 𝑘 = 2 → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
143 |
|
oveq1 |
⊢ ( 𝑘 = 2 → ( 𝑘 ↑ 𝑋 ) = ( 2 ↑ 𝑋 ) ) |
144 |
142 143
|
oveq12d |
⊢ ( 𝑘 = 2 → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) = ( 𝐴 · ( 2 ↑ 𝑋 ) ) ) |
145 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
146 |
145
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
147 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
148 |
147
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
149 |
|
0ne1 |
⊢ 0 ≠ 1 |
150 |
149
|
a1i |
⊢ ( 𝜑 → 0 ≠ 1 ) |
151 |
|
1ne2 |
⊢ 1 ≠ 2 |
152 |
151
|
a1i |
⊢ ( 𝜑 → 1 ≠ 2 ) |
153 |
|
0ne2 |
⊢ 0 ≠ 2 |
154 |
153
|
a1i |
⊢ ( 𝜑 → 0 ≠ 2 ) |
155 |
8 4 1 3
|
coe1fvalcl |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 0 ∈ ℕ0 ) → ( 𝐹 ‘ 0 ) ∈ 𝐾 ) |
156 |
14 145 155
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ∈ 𝐾 ) |
157 |
12 156
|
eqeltrid |
⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) |
158 |
33 7 35 146 16
|
mulgnn0cld |
⊢ ( 𝜑 → ( 0 ↑ 𝑋 ) ∈ 𝐾 ) |
159 |
3 5 25 157 158
|
ringcld |
⊢ ( 𝜑 → ( 𝐶 · ( 0 ↑ 𝑋 ) ) ∈ 𝐾 ) |
160 |
8 4 1 3
|
coe1fvalcl |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 1 ∈ ℕ0 ) → ( 𝐹 ‘ 1 ) ∈ 𝐾 ) |
161 |
14 147 160
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ 𝐾 ) |
162 |
11 161
|
eqeltrid |
⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) |
163 |
33 7 35 148 16
|
mulgnn0cld |
⊢ ( 𝜑 → ( 1 ↑ 𝑋 ) ∈ 𝐾 ) |
164 |
3 5 25 162 163
|
ringcld |
⊢ ( 𝜑 → ( 𝐵 · ( 1 ↑ 𝑋 ) ) ∈ 𝐾 ) |
165 |
8 4 1 3
|
coe1fvalcl |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 2 ∈ ℕ0 ) → ( 𝐹 ‘ 2 ) ∈ 𝐾 ) |
166 |
14 48 165
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 2 ) ∈ 𝐾 ) |
167 |
10 166
|
eqeltrid |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
168 |
33 7 35 49 16
|
mulgnn0cld |
⊢ ( 𝜑 → ( 2 ↑ 𝑋 ) ∈ 𝐾 ) |
169 |
3 5 25 167 168
|
ringcld |
⊢ ( 𝜑 → ( 𝐴 · ( 2 ↑ 𝑋 ) ) ∈ 𝐾 ) |
170 |
3 6 136 140 144 26 146 148 49 150 152 154 159 164 169
|
gsumtp |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 , 2 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) = ( ( ( 𝐶 · ( 0 ↑ 𝑋 ) ) + ( 𝐵 · ( 1 ↑ 𝑋 ) ) ) + ( 𝐴 · ( 2 ↑ 𝑋 ) ) ) ) |
171 |
3 6 108 159 164
|
grpcld |
⊢ ( 𝜑 → ( ( 𝐶 · ( 0 ↑ 𝑋 ) ) + ( 𝐵 · ( 1 ↑ 𝑋 ) ) ) ∈ 𝐾 ) |
172 |
3 6
|
cmncom |
⊢ ( ( 𝑅 ∈ CMnd ∧ ( ( 𝐶 · ( 0 ↑ 𝑋 ) ) + ( 𝐵 · ( 1 ↑ 𝑋 ) ) ) ∈ 𝐾 ∧ ( 𝐴 · ( 2 ↑ 𝑋 ) ) ∈ 𝐾 ) → ( ( ( 𝐶 · ( 0 ↑ 𝑋 ) ) + ( 𝐵 · ( 1 ↑ 𝑋 ) ) ) + ( 𝐴 · ( 2 ↑ 𝑋 ) ) ) = ( ( 𝐴 · ( 2 ↑ 𝑋 ) ) + ( ( 𝐶 · ( 0 ↑ 𝑋 ) ) + ( 𝐵 · ( 1 ↑ 𝑋 ) ) ) ) ) |
173 |
26 171 169 172
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐶 · ( 0 ↑ 𝑋 ) ) + ( 𝐵 · ( 1 ↑ 𝑋 ) ) ) + ( 𝐴 · ( 2 ↑ 𝑋 ) ) ) = ( ( 𝐴 · ( 2 ↑ 𝑋 ) ) + ( ( 𝐶 · ( 0 ↑ 𝑋 ) ) + ( 𝐵 · ( 1 ↑ 𝑋 ) ) ) ) ) |
174 |
3 6
|
cmncom |
⊢ ( ( 𝑅 ∈ CMnd ∧ ( 𝐶 · ( 0 ↑ 𝑋 ) ) ∈ 𝐾 ∧ ( 𝐵 · ( 1 ↑ 𝑋 ) ) ∈ 𝐾 ) → ( ( 𝐶 · ( 0 ↑ 𝑋 ) ) + ( 𝐵 · ( 1 ↑ 𝑋 ) ) ) = ( ( 𝐵 · ( 1 ↑ 𝑋 ) ) + ( 𝐶 · ( 0 ↑ 𝑋 ) ) ) ) |
175 |
26 159 164 174
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐶 · ( 0 ↑ 𝑋 ) ) + ( 𝐵 · ( 1 ↑ 𝑋 ) ) ) = ( ( 𝐵 · ( 1 ↑ 𝑋 ) ) + ( 𝐶 · ( 0 ↑ 𝑋 ) ) ) ) |
176 |
33 7
|
mulg1 |
⊢ ( 𝑋 ∈ 𝐾 → ( 1 ↑ 𝑋 ) = 𝑋 ) |
177 |
16 176
|
syl |
⊢ ( 𝜑 → ( 1 ↑ 𝑋 ) = 𝑋 ) |
178 |
177
|
oveq2d |
⊢ ( 𝜑 → ( 𝐵 · ( 1 ↑ 𝑋 ) ) = ( 𝐵 · 𝑋 ) ) |
179 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
180 |
32 179
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
181 |
33 180 7
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐾 → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
182 |
16 181
|
syl |
⊢ ( 𝜑 → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
183 |
182
|
oveq2d |
⊢ ( 𝜑 → ( 𝐶 · ( 0 ↑ 𝑋 ) ) = ( 𝐶 · ( 1r ‘ 𝑅 ) ) ) |
184 |
3 5 179 25 157
|
ringridmd |
⊢ ( 𝜑 → ( 𝐶 · ( 1r ‘ 𝑅 ) ) = 𝐶 ) |
185 |
183 184
|
eqtrd |
⊢ ( 𝜑 → ( 𝐶 · ( 0 ↑ 𝑋 ) ) = 𝐶 ) |
186 |
178 185
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐵 · ( 1 ↑ 𝑋 ) ) + ( 𝐶 · ( 0 ↑ 𝑋 ) ) ) = ( ( 𝐵 · 𝑋 ) + 𝐶 ) ) |
187 |
175 186
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐶 · ( 0 ↑ 𝑋 ) ) + ( 𝐵 · ( 1 ↑ 𝑋 ) ) ) = ( ( 𝐵 · 𝑋 ) + 𝐶 ) ) |
188 |
187
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 2 ↑ 𝑋 ) ) + ( ( 𝐶 · ( 0 ↑ 𝑋 ) ) + ( 𝐵 · ( 1 ↑ 𝑋 ) ) ) ) = ( ( 𝐴 · ( 2 ↑ 𝑋 ) ) + ( ( 𝐵 · 𝑋 ) + 𝐶 ) ) ) |
189 |
170 173 188
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 , 2 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) = ( ( 𝐴 · ( 2 ↑ 𝑋 ) ) + ( ( 𝐵 · 𝑋 ) + 𝐶 ) ) ) |
190 |
114 132 189
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 3 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) + ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 3 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) = ( ( 𝐴 · ( 2 ↑ 𝑋 ) ) + ( ( 𝐵 · 𝑋 ) + 𝐶 ) ) ) |
191 |
23 76 190
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑋 ) = ( ( 𝐴 · ( 2 ↑ 𝑋 ) ) + ( ( 𝐵 · 𝑋 ) + 𝐶 ) ) ) |