| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evl1deg1.1 |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
evl1deg1.2 |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
| 3 |
|
evl1deg1.3 |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 4 |
|
evl1deg1.4 |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 5 |
|
evl1deg1.5 |
⊢ · = ( .r ‘ 𝑅 ) |
| 6 |
|
evl1deg1.6 |
⊢ + = ( +g ‘ 𝑅 ) |
| 7 |
|
evl1deg2.p |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 8 |
|
evl1deg3.f |
⊢ 𝐹 = ( coe1 ‘ 𝑀 ) |
| 9 |
|
evl1deg3.e |
⊢ 𝐸 = ( deg1 ‘ 𝑅 ) |
| 10 |
|
evl1deg3.a |
⊢ 𝐴 = ( 𝐹 ‘ 3 ) |
| 11 |
|
evl1deg3.b |
⊢ 𝐵 = ( 𝐹 ‘ 2 ) |
| 12 |
|
evl1deg3.c |
⊢ 𝐶 = ( 𝐹 ‘ 1 ) |
| 13 |
|
evl1deg3.d |
⊢ 𝐷 = ( 𝐹 ‘ 0 ) |
| 14 |
|
evl1deg3.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 15 |
|
evl1deg3.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝑈 ) |
| 16 |
|
evl1deg3.1 |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑀 ) = 3 ) |
| 17 |
|
evl1deg3.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
| 18 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑘 ↑ 𝑥 ) = ( 𝑘 ↑ 𝑋 ) ) |
| 19 |
18
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) |
| 20 |
19
|
mpteq2dv |
⊢ ( 𝑥 = 𝑋 → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 22 |
2 1 3 4 14 15 5 7 8
|
evl1fpws |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) = ( 𝑥 ∈ 𝐾 ↦ ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ) ) |
| 23 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ∈ V ) |
| 24 |
21 22 17 23
|
fvmptd4 |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑋 ) = ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 25 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 26 |
14
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 27 |
26
|
ringcmnd |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 28 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 29 |
28
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
| 30 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 31 |
8 4 1 3
|
coe1fvalcl |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐾 ) |
| 32 |
15 31
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐾 ) |
| 33 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 34 |
33 3
|
mgpbas |
⊢ 𝐾 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 35 |
33
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 36 |
26 35
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 38 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 39 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑋 ∈ 𝐾 ) |
| 40 |
34 7 37 38 39
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ↑ 𝑋 ) ∈ 𝐾 ) |
| 41 |
3 5 30 32 40
|
ringcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐾 ) |
| 42 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ V ) |
| 43 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) |
| 44 |
|
oveq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ↑ 𝑋 ) = ( 𝑗 ↑ 𝑋 ) ) |
| 45 |
43 44
|
oveq12d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) ) |
| 46 |
|
breq1 |
⊢ ( 𝑖 = ( 𝐸 ‘ 𝑀 ) → ( 𝑖 < 𝑗 ↔ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) ) |
| 47 |
46
|
imbi1d |
⊢ ( 𝑖 = ( 𝐸 ‘ 𝑀 ) → ( ( 𝑖 < 𝑗 → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ↔ ( ( 𝐸 ‘ 𝑀 ) < 𝑗 → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 48 |
47
|
ralbidv |
⊢ ( 𝑖 = ( 𝐸 ‘ 𝑀 ) → ( ∀ 𝑗 ∈ ℕ0 ( 𝑖 < 𝑗 → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ↔ ∀ 𝑗 ∈ ℕ0 ( ( 𝐸 ‘ 𝑀 ) < 𝑗 → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 49 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 50 |
49
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℕ0 ) |
| 51 |
16 50
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑀 ) ∈ ℕ0 ) |
| 52 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → 𝑀 ∈ 𝑈 ) |
| 53 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → 𝑗 ∈ ℕ0 ) |
| 54 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → ( 𝐸 ‘ 𝑀 ) < 𝑗 ) |
| 55 |
9 1 4 25 8
|
deg1lt |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 𝑗 ∈ ℕ0 ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → ( 𝐹 ‘ 𝑗 ) = ( 0g ‘ 𝑅 ) ) |
| 56 |
52 53 54 55
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → ( 𝐹 ‘ 𝑗 ) = ( 0g ‘ 𝑅 ) ) |
| 57 |
56
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( ( 0g ‘ 𝑅 ) · ( 𝑗 ↑ 𝑋 ) ) ) |
| 58 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → 𝑅 ∈ Ring ) |
| 59 |
58 35
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 60 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → 𝑋 ∈ 𝐾 ) |
| 61 |
34 7 59 53 60
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → ( 𝑗 ↑ 𝑋 ) ∈ 𝐾 ) |
| 62 |
3 5 25 58 61
|
ringlzd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → ( ( 0g ‘ 𝑅 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) |
| 63 |
57 62
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐸 ‘ 𝑀 ) < 𝑗 ) → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) |
| 64 |
63
|
ex |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐸 ‘ 𝑀 ) < 𝑗 → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 65 |
64
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ℕ0 ( ( 𝐸 ‘ 𝑀 ) < 𝑗 → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 66 |
48 51 65
|
rspcedvdw |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ℕ0 ∀ 𝑗 ∈ ℕ0 ( 𝑖 < 𝑗 → ( ( 𝐹 ‘ 𝑗 ) · ( 𝑗 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 67 |
42 41 45 66
|
mptnn0fsuppd |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 68 |
|
fzouzdisj |
⊢ ( ( 0 ..^ 4 ) ∩ ( ℤ≥ ‘ 4 ) ) = ∅ |
| 69 |
68
|
a1i |
⊢ ( 𝜑 → ( ( 0 ..^ 4 ) ∩ ( ℤ≥ ‘ 4 ) ) = ∅ ) |
| 70 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 71 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
| 72 |
71 70
|
eleqtri |
⊢ 4 ∈ ( ℤ≥ ‘ 0 ) |
| 73 |
|
fzouzsplit |
⊢ ( 4 ∈ ( ℤ≥ ‘ 0 ) → ( ℤ≥ ‘ 0 ) = ( ( 0 ..^ 4 ) ∪ ( ℤ≥ ‘ 4 ) ) ) |
| 74 |
72 73
|
ax-mp |
⊢ ( ℤ≥ ‘ 0 ) = ( ( 0 ..^ 4 ) ∪ ( ℤ≥ ‘ 4 ) ) |
| 75 |
70 74
|
eqtri |
⊢ ℕ0 = ( ( 0 ..^ 4 ) ∪ ( ℤ≥ ‘ 4 ) ) |
| 76 |
75
|
a1i |
⊢ ( 𝜑 → ℕ0 = ( ( 0 ..^ 4 ) ∪ ( ℤ≥ ‘ 4 ) ) ) |
| 77 |
3 25 6 27 29 41 67 69 76
|
gsumsplit2 |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) = ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 4 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) + ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
| 78 |
|
fzofi |
⊢ ( 0 ..^ 4 ) ∈ Fin |
| 79 |
78
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 4 ) ∈ Fin ) |
| 80 |
|
fzo0ssnn0 |
⊢ ( 0 ..^ 4 ) ⊆ ℕ0 |
| 81 |
80
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 4 ) ⊆ ℕ0 ) |
| 82 |
81
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 4 ) ) → 𝑘 ∈ ℕ0 ) |
| 83 |
82 41
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 4 ) ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐾 ) |
| 84 |
|
0ne2 |
⊢ 0 ≠ 2 |
| 85 |
|
1ne2 |
⊢ 1 ≠ 2 |
| 86 |
|
0re |
⊢ 0 ∈ ℝ |
| 87 |
|
3pos |
⊢ 0 < 3 |
| 88 |
86 87
|
ltneii |
⊢ 0 ≠ 3 |
| 89 |
|
1re |
⊢ 1 ∈ ℝ |
| 90 |
|
1lt3 |
⊢ 1 < 3 |
| 91 |
89 90
|
ltneii |
⊢ 1 ≠ 3 |
| 92 |
|
disjpr2 |
⊢ ( ( ( 0 ≠ 2 ∧ 1 ≠ 2 ) ∧ ( 0 ≠ 3 ∧ 1 ≠ 3 ) ) → ( { 0 , 1 } ∩ { 2 , 3 } ) = ∅ ) |
| 93 |
84 85 88 91 92
|
mp4an |
⊢ ( { 0 , 1 } ∩ { 2 , 3 } ) = ∅ |
| 94 |
93
|
a1i |
⊢ ( 𝜑 → ( { 0 , 1 } ∩ { 2 , 3 } ) = ∅ ) |
| 95 |
|
fzo0to42pr |
⊢ ( 0 ..^ 4 ) = ( { 0 , 1 } ∪ { 2 , 3 } ) |
| 96 |
95
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 4 ) = ( { 0 , 1 } ∪ { 2 , 3 } ) ) |
| 97 |
3 6 27 79 83 94 96
|
gsummptfidmsplit |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 4 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) = ( ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) + ( 𝑅 Σg ( 𝑘 ∈ { 2 , 3 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
| 98 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ) → 𝑀 ∈ 𝑈 ) |
| 99 |
|
uzss |
⊢ ( 4 ∈ ( ℤ≥ ‘ 0 ) → ( ℤ≥ ‘ 4 ) ⊆ ( ℤ≥ ‘ 0 ) ) |
| 100 |
72 99
|
ax-mp |
⊢ ( ℤ≥ ‘ 4 ) ⊆ ( ℤ≥ ‘ 0 ) |
| 101 |
100 70
|
sseqtrri |
⊢ ( ℤ≥ ‘ 4 ) ⊆ ℕ0 |
| 102 |
101
|
a1i |
⊢ ( 𝜑 → ( ℤ≥ ‘ 4 ) ⊆ ℕ0 ) |
| 103 |
102
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ) → 𝑘 ∈ ℕ0 ) |
| 104 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ) → ( 𝐸 ‘ 𝑀 ) = 3 ) |
| 105 |
|
3p1e4 |
⊢ ( 3 + 1 ) = 4 |
| 106 |
105
|
fveq2i |
⊢ ( ℤ≥ ‘ ( 3 + 1 ) ) = ( ℤ≥ ‘ 4 ) |
| 107 |
106
|
eleq2i |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( 3 + 1 ) ) ↔ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ) |
| 108 |
|
3z |
⊢ 3 ∈ ℤ |
| 109 |
|
eluzp1l |
⊢ ( ( 3 ∈ ℤ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 3 + 1 ) ) ) → 3 < 𝑘 ) |
| 110 |
108 109
|
mpan |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( 3 + 1 ) ) → 3 < 𝑘 ) |
| 111 |
107 110
|
sylbir |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) → 3 < 𝑘 ) |
| 112 |
111
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ) → 3 < 𝑘 ) |
| 113 |
104 112
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ) → ( 𝐸 ‘ 𝑀 ) < 𝑘 ) |
| 114 |
9 1 4 25 8
|
deg1lt |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 𝑘 ∈ ℕ0 ∧ ( 𝐸 ‘ 𝑀 ) < 𝑘 ) → ( 𝐹 ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) |
| 115 |
98 103 113 114
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) |
| 116 |
115
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) = ( ( 0g ‘ 𝑅 ) · ( 𝑘 ↑ 𝑋 ) ) ) |
| 117 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ) → 𝑅 ∈ Ring ) |
| 118 |
117 35
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 119 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ) → 𝑋 ∈ 𝐾 ) |
| 120 |
34 7 118 103 119
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ) → ( 𝑘 ↑ 𝑋 ) ∈ 𝐾 ) |
| 121 |
3 5 25 117 120
|
ringlzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ) → ( ( 0g ‘ 𝑅 ) · ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) |
| 122 |
116 121
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ) → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) |
| 123 |
122
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) ↦ ( 0g ‘ 𝑅 ) ) ) |
| 124 |
123
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) ↦ ( 0g ‘ 𝑅 ) ) ) ) |
| 125 |
97 124
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 4 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) + ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) = ( ( ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) + ( 𝑅 Σg ( 𝑘 ∈ { 2 , 3 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) + ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) ↦ ( 0g ‘ 𝑅 ) ) ) ) ) |
| 126 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 127 |
126
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 128 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 129 |
128
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
| 130 |
|
0ne1 |
⊢ 0 ≠ 1 |
| 131 |
130
|
a1i |
⊢ ( 𝜑 → 0 ≠ 1 ) |
| 132 |
8 4 1 3
|
coe1fvalcl |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 0 ∈ ℕ0 ) → ( 𝐹 ‘ 0 ) ∈ 𝐾 ) |
| 133 |
15 126 132
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ∈ 𝐾 ) |
| 134 |
34 7 36 127 17
|
mulgnn0cld |
⊢ ( 𝜑 → ( 0 ↑ 𝑋 ) ∈ 𝐾 ) |
| 135 |
3 5 26 133 134
|
ringcld |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 0 ) · ( 0 ↑ 𝑋 ) ) ∈ 𝐾 ) |
| 136 |
8 4 1 3
|
coe1fvalcl |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 1 ∈ ℕ0 ) → ( 𝐹 ‘ 1 ) ∈ 𝐾 ) |
| 137 |
15 128 136
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ 𝐾 ) |
| 138 |
34 7 36 129 17
|
mulgnn0cld |
⊢ ( 𝜑 → ( 1 ↑ 𝑋 ) ∈ 𝐾 ) |
| 139 |
3 5 26 137 138
|
ringcld |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 1 ) · ( 1 ↑ 𝑋 ) ) ∈ 𝐾 ) |
| 140 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 0 ) ) |
| 141 |
|
oveq1 |
⊢ ( 𝑘 = 0 → ( 𝑘 ↑ 𝑋 ) = ( 0 ↑ 𝑋 ) ) |
| 142 |
140 141
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 0 ) · ( 0 ↑ 𝑋 ) ) ) |
| 143 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 1 ) ) |
| 144 |
|
oveq1 |
⊢ ( 𝑘 = 1 → ( 𝑘 ↑ 𝑋 ) = ( 1 ↑ 𝑋 ) ) |
| 145 |
143 144
|
oveq12d |
⊢ ( 𝑘 = 1 → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 1 ) · ( 1 ↑ 𝑋 ) ) ) |
| 146 |
3 6 142 145
|
gsumpr |
⊢ ( ( 𝑅 ∈ CMnd ∧ ( 0 ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ 0 ≠ 1 ) ∧ ( ( ( 𝐹 ‘ 0 ) · ( 0 ↑ 𝑋 ) ) ∈ 𝐾 ∧ ( ( 𝐹 ‘ 1 ) · ( 1 ↑ 𝑋 ) ) ∈ 𝐾 ) ) → ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) = ( ( ( 𝐹 ‘ 0 ) · ( 0 ↑ 𝑋 ) ) + ( ( 𝐹 ‘ 1 ) · ( 1 ↑ 𝑋 ) ) ) ) |
| 147 |
27 127 129 131 135 139 146
|
syl132anc |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) = ( ( ( 𝐹 ‘ 0 ) · ( 0 ↑ 𝑋 ) ) + ( ( 𝐹 ‘ 1 ) · ( 1 ↑ 𝑋 ) ) ) ) |
| 148 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 149 |
13 133
|
eqeltrid |
⊢ ( 𝜑 → 𝐷 ∈ 𝐾 ) |
| 150 |
3 5 148 26 149
|
ringridmd |
⊢ ( 𝜑 → ( 𝐷 · ( 1r ‘ 𝑅 ) ) = 𝐷 ) |
| 151 |
150
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐷 · ( 1r ‘ 𝑅 ) ) + ( 𝐶 · 𝑋 ) ) = ( 𝐷 + ( 𝐶 · 𝑋 ) ) ) |
| 152 |
13
|
a1i |
⊢ ( 𝜑 → 𝐷 = ( 𝐹 ‘ 0 ) ) |
| 153 |
33 148
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 154 |
34 153 7
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐾 → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
| 155 |
17 154
|
syl |
⊢ ( 𝜑 → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
| 156 |
155
|
eqcomd |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 0 ↑ 𝑋 ) ) |
| 157 |
152 156
|
oveq12d |
⊢ ( 𝜑 → ( 𝐷 · ( 1r ‘ 𝑅 ) ) = ( ( 𝐹 ‘ 0 ) · ( 0 ↑ 𝑋 ) ) ) |
| 158 |
12
|
a1i |
⊢ ( 𝜑 → 𝐶 = ( 𝐹 ‘ 1 ) ) |
| 159 |
34 7
|
mulg1 |
⊢ ( 𝑋 ∈ 𝐾 → ( 1 ↑ 𝑋 ) = 𝑋 ) |
| 160 |
17 159
|
syl |
⊢ ( 𝜑 → ( 1 ↑ 𝑋 ) = 𝑋 ) |
| 161 |
160
|
eqcomd |
⊢ ( 𝜑 → 𝑋 = ( 1 ↑ 𝑋 ) ) |
| 162 |
158 161
|
oveq12d |
⊢ ( 𝜑 → ( 𝐶 · 𝑋 ) = ( ( 𝐹 ‘ 1 ) · ( 1 ↑ 𝑋 ) ) ) |
| 163 |
157 162
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐷 · ( 1r ‘ 𝑅 ) ) + ( 𝐶 · 𝑋 ) ) = ( ( ( 𝐹 ‘ 0 ) · ( 0 ↑ 𝑋 ) ) + ( ( 𝐹 ‘ 1 ) · ( 1 ↑ 𝑋 ) ) ) ) |
| 164 |
162 139
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐶 · 𝑋 ) ∈ 𝐾 ) |
| 165 |
3 6
|
ringcom |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐷 ∈ 𝐾 ∧ ( 𝐶 · 𝑋 ) ∈ 𝐾 ) → ( 𝐷 + ( 𝐶 · 𝑋 ) ) = ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) |
| 166 |
26 149 164 165
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 + ( 𝐶 · 𝑋 ) ) = ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) |
| 167 |
151 163 166
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 0 ) · ( 0 ↑ 𝑋 ) ) + ( ( 𝐹 ‘ 1 ) · ( 1 ↑ 𝑋 ) ) ) = ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) |
| 168 |
147 167
|
eqtrd |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) = ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) |
| 169 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 170 |
169
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ0 ) |
| 171 |
|
2re |
⊢ 2 ∈ ℝ |
| 172 |
|
2lt3 |
⊢ 2 < 3 |
| 173 |
171 172
|
ltneii |
⊢ 2 ≠ 3 |
| 174 |
173
|
a1i |
⊢ ( 𝜑 → 2 ≠ 3 ) |
| 175 |
8 4 1 3
|
coe1fvalcl |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 2 ∈ ℕ0 ) → ( 𝐹 ‘ 2 ) ∈ 𝐾 ) |
| 176 |
15 169 175
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 2 ) ∈ 𝐾 ) |
| 177 |
11 176
|
eqeltrid |
⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) |
| 178 |
34 7 36 170 17
|
mulgnn0cld |
⊢ ( 𝜑 → ( 2 ↑ 𝑋 ) ∈ 𝐾 ) |
| 179 |
3 5 26 177 178
|
ringcld |
⊢ ( 𝜑 → ( 𝐵 · ( 2 ↑ 𝑋 ) ) ∈ 𝐾 ) |
| 180 |
8 4 1 3
|
coe1fvalcl |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 3 ∈ ℕ0 ) → ( 𝐹 ‘ 3 ) ∈ 𝐾 ) |
| 181 |
15 49 180
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 3 ) ∈ 𝐾 ) |
| 182 |
10 181
|
eqeltrid |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
| 183 |
34 7 36 50 17
|
mulgnn0cld |
⊢ ( 𝜑 → ( 3 ↑ 𝑋 ) ∈ 𝐾 ) |
| 184 |
3 5 26 182 183
|
ringcld |
⊢ ( 𝜑 → ( 𝐴 · ( 3 ↑ 𝑋 ) ) ∈ 𝐾 ) |
| 185 |
|
fveq2 |
⊢ ( 𝑘 = 2 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 2 ) ) |
| 186 |
185 11
|
eqtr4di |
⊢ ( 𝑘 = 2 → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) |
| 187 |
|
oveq1 |
⊢ ( 𝑘 = 2 → ( 𝑘 ↑ 𝑋 ) = ( 2 ↑ 𝑋 ) ) |
| 188 |
186 187
|
oveq12d |
⊢ ( 𝑘 = 2 → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) = ( 𝐵 · ( 2 ↑ 𝑋 ) ) ) |
| 189 |
|
fveq2 |
⊢ ( 𝑘 = 3 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 3 ) ) |
| 190 |
189 10
|
eqtr4di |
⊢ ( 𝑘 = 3 → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
| 191 |
|
oveq1 |
⊢ ( 𝑘 = 3 → ( 𝑘 ↑ 𝑋 ) = ( 3 ↑ 𝑋 ) ) |
| 192 |
190 191
|
oveq12d |
⊢ ( 𝑘 = 3 → ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) = ( 𝐴 · ( 3 ↑ 𝑋 ) ) ) |
| 193 |
3 6 188 192
|
gsumpr |
⊢ ( ( 𝑅 ∈ CMnd ∧ ( 2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≠ 3 ) ∧ ( ( 𝐵 · ( 2 ↑ 𝑋 ) ) ∈ 𝐾 ∧ ( 𝐴 · ( 3 ↑ 𝑋 ) ) ∈ 𝐾 ) ) → ( 𝑅 Σg ( 𝑘 ∈ { 2 , 3 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) = ( ( 𝐵 · ( 2 ↑ 𝑋 ) ) + ( 𝐴 · ( 3 ↑ 𝑋 ) ) ) ) |
| 194 |
27 170 50 174 179 184 193
|
syl132anc |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ { 2 , 3 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) = ( ( 𝐵 · ( 2 ↑ 𝑋 ) ) + ( 𝐴 · ( 3 ↑ 𝑋 ) ) ) ) |
| 195 |
3 6
|
cmncom |
⊢ ( ( 𝑅 ∈ CMnd ∧ ( 𝐵 · ( 2 ↑ 𝑋 ) ) ∈ 𝐾 ∧ ( 𝐴 · ( 3 ↑ 𝑋 ) ) ∈ 𝐾 ) → ( ( 𝐵 · ( 2 ↑ 𝑋 ) ) + ( 𝐴 · ( 3 ↑ 𝑋 ) ) ) = ( ( 𝐴 · ( 3 ↑ 𝑋 ) ) + ( 𝐵 · ( 2 ↑ 𝑋 ) ) ) ) |
| 196 |
27 179 184 195
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐵 · ( 2 ↑ 𝑋 ) ) + ( 𝐴 · ( 3 ↑ 𝑋 ) ) ) = ( ( 𝐴 · ( 3 ↑ 𝑋 ) ) + ( 𝐵 · ( 2 ↑ 𝑋 ) ) ) ) |
| 197 |
194 196
|
eqtrd |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ { 2 , 3 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) = ( ( 𝐴 · ( 3 ↑ 𝑋 ) ) + ( 𝐵 · ( 2 ↑ 𝑋 ) ) ) ) |
| 198 |
168 197
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) + ( 𝑅 Σg ( 𝑘 ∈ { 2 , 3 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) = ( ( ( 𝐶 · 𝑋 ) + 𝐷 ) + ( ( 𝐴 · ( 3 ↑ 𝑋 ) ) + ( 𝐵 · ( 2 ↑ 𝑋 ) ) ) ) ) |
| 199 |
14
|
crnggrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 200 |
3 6 199 164 149
|
grpcld |
⊢ ( 𝜑 → ( ( 𝐶 · 𝑋 ) + 𝐷 ) ∈ 𝐾 ) |
| 201 |
3 6 199 184 179
|
grpcld |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 ↑ 𝑋 ) ) + ( 𝐵 · ( 2 ↑ 𝑋 ) ) ) ∈ 𝐾 ) |
| 202 |
3 6
|
cmncom |
⊢ ( ( 𝑅 ∈ CMnd ∧ ( ( 𝐶 · 𝑋 ) + 𝐷 ) ∈ 𝐾 ∧ ( ( 𝐴 · ( 3 ↑ 𝑋 ) ) + ( 𝐵 · ( 2 ↑ 𝑋 ) ) ) ∈ 𝐾 ) → ( ( ( 𝐶 · 𝑋 ) + 𝐷 ) + ( ( 𝐴 · ( 3 ↑ 𝑋 ) ) + ( 𝐵 · ( 2 ↑ 𝑋 ) ) ) ) = ( ( ( 𝐴 · ( 3 ↑ 𝑋 ) ) + ( 𝐵 · ( 2 ↑ 𝑋 ) ) ) + ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) ) |
| 203 |
27 200 201 202
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐶 · 𝑋 ) + 𝐷 ) + ( ( 𝐴 · ( 3 ↑ 𝑋 ) ) + ( 𝐵 · ( 2 ↑ 𝑋 ) ) ) ) = ( ( ( 𝐴 · ( 3 ↑ 𝑋 ) ) + ( 𝐵 · ( 2 ↑ 𝑋 ) ) ) + ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) ) |
| 204 |
198 203
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) + ( 𝑅 Σg ( 𝑘 ∈ { 2 , 3 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) = ( ( ( 𝐴 · ( 3 ↑ 𝑋 ) ) + ( 𝐵 · ( 2 ↑ 𝑋 ) ) ) + ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) ) |
| 205 |
199
|
grpmndd |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 206 |
|
fvexd |
⊢ ( 𝜑 → ( ℤ≥ ‘ 4 ) ∈ V ) |
| 207 |
25
|
gsumz |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( ℤ≥ ‘ 4 ) ∈ V ) → ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) ↦ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 208 |
205 206 207
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) ↦ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 209 |
204 208
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) + ( 𝑅 Σg ( 𝑘 ∈ { 2 , 3 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) + ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) ↦ ( 0g ‘ 𝑅 ) ) ) ) = ( ( ( ( 𝐴 · ( 3 ↑ 𝑋 ) ) + ( 𝐵 · ( 2 ↑ 𝑋 ) ) ) + ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) + ( 0g ‘ 𝑅 ) ) ) |
| 210 |
3 6 199 201 200
|
grpcld |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( 3 ↑ 𝑋 ) ) + ( 𝐵 · ( 2 ↑ 𝑋 ) ) ) + ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) ∈ 𝐾 ) |
| 211 |
3 6 25 199 210
|
grpridd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · ( 3 ↑ 𝑋 ) ) + ( 𝐵 · ( 2 ↑ 𝑋 ) ) ) + ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) + ( 0g ‘ 𝑅 ) ) = ( ( ( 𝐴 · ( 3 ↑ 𝑋 ) ) + ( 𝐵 · ( 2 ↑ 𝑋 ) ) ) + ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) ) |
| 212 |
125 209 211
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 4 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) + ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) = ( ( ( 𝐴 · ( 3 ↑ 𝑋 ) ) + ( 𝐵 · ( 2 ↑ 𝑋 ) ) ) + ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) ) |
| 213 |
24 77 212
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑋 ) = ( ( ( 𝐴 · ( 3 ↑ 𝑋 ) ) + ( 𝐵 · ( 2 ↑ 𝑋 ) ) ) + ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) ) |