Step |
Hyp |
Ref |
Expression |
1 |
|
evl1fpws.q |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
2 |
|
evl1fpws.w |
⊢ 𝑊 = ( Poly1 ‘ 𝑅 ) |
3 |
|
evl1fpws.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
evl1fpws.u |
⊢ 𝑈 = ( Base ‘ 𝑊 ) |
5 |
|
evl1fpws.s |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
6 |
|
evl1fpws.y |
⊢ ( 𝜑 → 𝑀 ∈ 𝑈 ) |
7 |
|
evl1fpws.1 |
⊢ · = ( .r ‘ 𝑅 ) |
8 |
|
evl1fpws.2 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) |
9 |
|
evl1fpws.a |
⊢ 𝐴 = ( coe1 ‘ 𝑀 ) |
10 |
1 3
|
evl1fval1 |
⊢ 𝑂 = ( 𝑅 evalSub1 𝐵 ) |
11 |
10
|
fveq1i |
⊢ ( 𝑂 ‘ 𝑀 ) = ( ( 𝑅 evalSub1 𝐵 ) ‘ 𝑀 ) |
12 |
|
eqid |
⊢ ( 𝑅 evalSub1 𝐵 ) = ( 𝑅 evalSub1 𝐵 ) |
13 |
|
eqid |
⊢ ( Poly1 ‘ ( 𝑅 ↾s 𝐵 ) ) = ( Poly1 ‘ ( 𝑅 ↾s 𝐵 ) ) |
14 |
|
eqid |
⊢ ( 𝑅 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) |
15 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s 𝐵 ) ) ) = ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s 𝐵 ) ) ) |
16 |
5
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
17 |
3
|
subrgid |
⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
19 |
3
|
ressid |
⊢ ( 𝑅 ∈ CRing → ( 𝑅 ↾s 𝐵 ) = 𝑅 ) |
20 |
5 19
|
syl |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝐵 ) = 𝑅 ) |
21 |
20
|
fveq2d |
⊢ ( 𝜑 → ( Poly1 ‘ ( 𝑅 ↾s 𝐵 ) ) = ( Poly1 ‘ 𝑅 ) ) |
22 |
21 2
|
eqtr4di |
⊢ ( 𝜑 → ( Poly1 ‘ ( 𝑅 ↾s 𝐵 ) ) = 𝑊 ) |
23 |
22
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s 𝐵 ) ) ) = ( Base ‘ 𝑊 ) ) |
24 |
23 4
|
eqtr4di |
⊢ ( 𝜑 → ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s 𝐵 ) ) ) = 𝑈 ) |
25 |
6 24
|
eleqtrrd |
⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s 𝐵 ) ) ) ) |
26 |
12 3 13 14 15 5 18 25 7 8 9
|
evls1fpws |
⊢ ( 𝜑 → ( ( 𝑅 evalSub1 𝐵 ) ‘ 𝑀 ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ) ) |
27 |
11 26
|
eqtrid |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ) ) |