Metamath Proof Explorer


Theorem evl1fpws

Description: Evaluation of a univariate polynomial as a function in a power series. (Contributed by Thierry Arnoux, 23-Jan-2025)

Ref Expression
Hypotheses evl1fpws.q 𝑂 = ( eval1𝑅 )
evl1fpws.w 𝑊 = ( Poly1𝑅 )
evl1fpws.b 𝐵 = ( Base ‘ 𝑅 )
evl1fpws.u 𝑈 = ( Base ‘ 𝑊 )
evl1fpws.s ( 𝜑𝑅 ∈ CRing )
evl1fpws.y ( 𝜑𝑀𝑈 )
evl1fpws.1 · = ( .r𝑅 )
evl1fpws.2 = ( .g ‘ ( mulGrp ‘ 𝑅 ) )
evl1fpws.a 𝐴 = ( coe1𝑀 )
Assertion evl1fpws ( 𝜑 → ( 𝑂𝑀 ) = ( 𝑥𝐵 ↦ ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴𝑘 ) · ( 𝑘 𝑥 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 evl1fpws.q 𝑂 = ( eval1𝑅 )
2 evl1fpws.w 𝑊 = ( Poly1𝑅 )
3 evl1fpws.b 𝐵 = ( Base ‘ 𝑅 )
4 evl1fpws.u 𝑈 = ( Base ‘ 𝑊 )
5 evl1fpws.s ( 𝜑𝑅 ∈ CRing )
6 evl1fpws.y ( 𝜑𝑀𝑈 )
7 evl1fpws.1 · = ( .r𝑅 )
8 evl1fpws.2 = ( .g ‘ ( mulGrp ‘ 𝑅 ) )
9 evl1fpws.a 𝐴 = ( coe1𝑀 )
10 1 3 evl1fval1 𝑂 = ( 𝑅 evalSub1 𝐵 )
11 10 fveq1i ( 𝑂𝑀 ) = ( ( 𝑅 evalSub1 𝐵 ) ‘ 𝑀 )
12 eqid ( 𝑅 evalSub1 𝐵 ) = ( 𝑅 evalSub1 𝐵 )
13 eqid ( Poly1 ‘ ( 𝑅s 𝐵 ) ) = ( Poly1 ‘ ( 𝑅s 𝐵 ) )
14 eqid ( 𝑅s 𝐵 ) = ( 𝑅s 𝐵 )
15 eqid ( Base ‘ ( Poly1 ‘ ( 𝑅s 𝐵 ) ) ) = ( Base ‘ ( Poly1 ‘ ( 𝑅s 𝐵 ) ) )
16 5 crngringd ( 𝜑𝑅 ∈ Ring )
17 3 subrgid ( 𝑅 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑅 ) )
18 16 17 syl ( 𝜑𝐵 ∈ ( SubRing ‘ 𝑅 ) )
19 3 ressid ( 𝑅 ∈ CRing → ( 𝑅s 𝐵 ) = 𝑅 )
20 5 19 syl ( 𝜑 → ( 𝑅s 𝐵 ) = 𝑅 )
21 20 fveq2d ( 𝜑 → ( Poly1 ‘ ( 𝑅s 𝐵 ) ) = ( Poly1𝑅 ) )
22 21 2 eqtr4di ( 𝜑 → ( Poly1 ‘ ( 𝑅s 𝐵 ) ) = 𝑊 )
23 22 fveq2d ( 𝜑 → ( Base ‘ ( Poly1 ‘ ( 𝑅s 𝐵 ) ) ) = ( Base ‘ 𝑊 ) )
24 23 4 eqtr4di ( 𝜑 → ( Base ‘ ( Poly1 ‘ ( 𝑅s 𝐵 ) ) ) = 𝑈 )
25 6 24 eleqtrrd ( 𝜑𝑀 ∈ ( Base ‘ ( Poly1 ‘ ( 𝑅s 𝐵 ) ) ) )
26 12 3 13 14 15 5 18 25 7 8 9 evls1fpws ( 𝜑 → ( ( 𝑅 evalSub1 𝐵 ) ‘ 𝑀 ) = ( 𝑥𝐵 ↦ ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴𝑘 ) · ( 𝑘 𝑥 ) ) ) ) ) )
27 11 26 eqtrid ( 𝜑 → ( 𝑂𝑀 ) = ( 𝑥𝐵 ↦ ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴𝑘 ) · ( 𝑘 𝑥 ) ) ) ) ) )