| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressply1evls1.1 |
⊢ 𝐺 = ( 𝐸 ↾s 𝑅 ) |
| 2 |
|
ressply1evls1.2 |
⊢ 𝑂 = ( 𝐸 evalSub1 𝑆 ) |
| 3 |
|
ressply1evls1.3 |
⊢ 𝑄 = ( 𝐺 evalSub1 𝑆 ) |
| 4 |
|
ressply1evls1.4 |
⊢ 𝑃 = ( Poly1 ‘ 𝐾 ) |
| 5 |
|
ressply1evls1.5 |
⊢ 𝐾 = ( 𝐸 ↾s 𝑆 ) |
| 6 |
|
ressply1evls1.6 |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 7 |
|
ressply1evls1.7 |
⊢ ( 𝜑 → 𝐸 ∈ CRing ) |
| 8 |
|
ressply1evls1.8 |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝐸 ) ) |
| 9 |
|
ressply1evls1.9 |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝐺 ) ) |
| 10 |
|
ressply1evls1.10 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 12 |
11
|
subrgss |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝐸 ) → 𝑅 ⊆ ( Base ‘ 𝐸 ) ) |
| 13 |
1 11
|
ressbas2 |
⊢ ( 𝑅 ⊆ ( Base ‘ 𝐸 ) → 𝑅 = ( Base ‘ 𝐺 ) ) |
| 14 |
8 12 13
|
3syl |
⊢ ( 𝜑 → 𝑅 = ( Base ‘ 𝐺 ) ) |
| 15 |
8 12
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ ( Base ‘ 𝐸 ) ) |
| 16 |
14 15
|
eqsstrrd |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) ⊆ ( Base ‘ 𝐸 ) ) |
| 17 |
16
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐸 ) ↦ ( 𝐸 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) ) ) ↾ ( Base ‘ 𝐺 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝐸 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) ) ) ) |
| 18 |
1
|
subsubrg |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝐸 ) → ( 𝑆 ∈ ( SubRing ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑆 ⊆ 𝑅 ) ) ) |
| 19 |
18
|
biimpa |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑆 ∈ ( SubRing ‘ 𝐺 ) ) → ( 𝑆 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑆 ⊆ 𝑅 ) ) |
| 20 |
8 9 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑆 ⊆ 𝑅 ) ) |
| 21 |
20
|
simpld |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝐸 ) ) |
| 22 |
|
eqid |
⊢ ( .r ‘ 𝐸 ) = ( .r ‘ 𝐸 ) |
| 23 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝐸 ) ) = ( .g ‘ ( mulGrp ‘ 𝐸 ) ) |
| 24 |
|
eqid |
⊢ ( coe1 ‘ 𝐹 ) = ( coe1 ‘ 𝐹 ) |
| 25 |
2 11 4 5 6 7 21 10 22 23 24
|
evls1fpws |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐹 ) = ( 𝑥 ∈ ( Base ‘ 𝐸 ) ↦ ( 𝐸 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) ) ) ) |
| 26 |
25 14
|
reseq12d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐹 ) ↾ 𝑅 ) = ( ( 𝑥 ∈ ( Base ‘ 𝐸 ) ↦ ( 𝐸 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) ) ) ↾ ( Base ‘ 𝐺 ) ) ) |
| 27 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 28 |
|
eqid |
⊢ ( Poly1 ‘ ( 𝐺 ↾s 𝑆 ) ) = ( Poly1 ‘ ( 𝐺 ↾s 𝑆 ) ) |
| 29 |
|
eqid |
⊢ ( 𝐺 ↾s 𝑆 ) = ( 𝐺 ↾s 𝑆 ) |
| 30 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ ( 𝐺 ↾s 𝑆 ) ) ) = ( Base ‘ ( Poly1 ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 31 |
1
|
subrgcrng |
⊢ ( ( 𝐸 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝐸 ) ) → 𝐺 ∈ CRing ) |
| 32 |
7 8 31
|
syl2anc |
⊢ ( 𝜑 → 𝐺 ∈ CRing ) |
| 33 |
20
|
simprd |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑅 ) |
| 34 |
|
ressabs |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑆 ⊆ 𝑅 ) → ( ( 𝐸 ↾s 𝑅 ) ↾s 𝑆 ) = ( 𝐸 ↾s 𝑆 ) ) |
| 35 |
8 33 34
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐸 ↾s 𝑅 ) ↾s 𝑆 ) = ( 𝐸 ↾s 𝑆 ) ) |
| 36 |
1
|
oveq1i |
⊢ ( 𝐺 ↾s 𝑆 ) = ( ( 𝐸 ↾s 𝑅 ) ↾s 𝑆 ) |
| 37 |
35 36 5
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝐺 ↾s 𝑆 ) = 𝐾 ) |
| 38 |
37
|
fveq2d |
⊢ ( 𝜑 → ( Poly1 ‘ ( 𝐺 ↾s 𝑆 ) ) = ( Poly1 ‘ 𝐾 ) ) |
| 39 |
38 4
|
eqtr4di |
⊢ ( 𝜑 → ( Poly1 ‘ ( 𝐺 ↾s 𝑆 ) ) = 𝑃 ) |
| 40 |
39
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ ( Poly1 ‘ ( 𝐺 ↾s 𝑆 ) ) ) = ( Base ‘ 𝑃 ) ) |
| 41 |
40 6
|
eqtr4di |
⊢ ( 𝜑 → ( Base ‘ ( Poly1 ‘ ( 𝐺 ↾s 𝑆 ) ) ) = 𝐵 ) |
| 42 |
10 41
|
eleqtrrd |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( Poly1 ‘ ( 𝐺 ↾s 𝑆 ) ) ) ) |
| 43 |
|
eqid |
⊢ ( .r ‘ 𝐺 ) = ( .r ‘ 𝐺 ) |
| 44 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝐺 ) ) = ( .g ‘ ( mulGrp ‘ 𝐺 ) ) |
| 45 |
3 27 28 29 30 32 9 42 43 44 24
|
evls1fpws |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐹 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ( .r ‘ 𝐺 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐺 ) ) 𝑥 ) ) ) ) ) ) |
| 46 |
|
eqid |
⊢ ( +g ‘ 𝐸 ) = ( +g ‘ 𝐸 ) |
| 47 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝐸 ∈ CRing ) |
| 48 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 49 |
48
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ℕ0 ∈ V ) |
| 50 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑅 ⊆ ( Base ‘ 𝐸 ) ) |
| 51 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ ( SubRing ‘ 𝐸 ) ) |
| 52 |
33 15
|
sstrd |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝐸 ) ) |
| 53 |
5 11
|
ressbas2 |
⊢ ( 𝑆 ⊆ ( Base ‘ 𝐸 ) → 𝑆 = ( Base ‘ 𝐾 ) ) |
| 54 |
52 53
|
syl |
⊢ ( 𝜑 → 𝑆 = ( Base ‘ 𝐾 ) ) |
| 55 |
54 33
|
eqsstrrd |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) ⊆ 𝑅 ) |
| 56 |
55
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( Base ‘ 𝐾 ) ⊆ 𝑅 ) |
| 57 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝐹 ∈ 𝐵 ) |
| 58 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 59 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 60 |
24 6 4 59
|
coe1fvalcl |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ∈ ( Base ‘ 𝐾 ) ) |
| 61 |
57 58 60
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ∈ ( Base ‘ 𝐾 ) ) |
| 62 |
56 61
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ∈ 𝑅 ) |
| 63 |
|
eqid |
⊢ ( mulGrp ‘ 𝐸 ) = ( mulGrp ‘ 𝐸 ) |
| 64 |
1 63
|
mgpress |
⊢ ( ( 𝐸 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝐸 ) ) → ( ( mulGrp ‘ 𝐸 ) ↾s 𝑅 ) = ( mulGrp ‘ 𝐺 ) ) |
| 65 |
47 51 64
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( mulGrp ‘ 𝐸 ) ↾s 𝑅 ) = ( mulGrp ‘ 𝐺 ) ) |
| 66 |
7
|
crngringd |
⊢ ( 𝜑 → 𝐸 ∈ Ring ) |
| 67 |
|
eqid |
⊢ ( 1r ‘ 𝐸 ) = ( 1r ‘ 𝐸 ) |
| 68 |
67
|
subrg1cl |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝐸 ) → ( 1r ‘ 𝐸 ) ∈ 𝑅 ) |
| 69 |
8 68
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝐸 ) ∈ 𝑅 ) |
| 70 |
1 11 67
|
ress1r |
⊢ ( ( 𝐸 ∈ Ring ∧ ( 1r ‘ 𝐸 ) ∈ 𝑅 ∧ 𝑅 ⊆ ( Base ‘ 𝐸 ) ) → ( 1r ‘ 𝐸 ) = ( 1r ‘ 𝐺 ) ) |
| 71 |
66 69 15 70
|
syl3anc |
⊢ ( 𝜑 → ( 1r ‘ 𝐸 ) = ( 1r ‘ 𝐺 ) ) |
| 72 |
71
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 1r ‘ 𝐸 ) = ( 1r ‘ 𝐺 ) ) |
| 73 |
63 67
|
ringidval |
⊢ ( 1r ‘ 𝐸 ) = ( 0g ‘ ( mulGrp ‘ 𝐸 ) ) |
| 74 |
|
eqid |
⊢ ( mulGrp ‘ 𝐺 ) = ( mulGrp ‘ 𝐺 ) |
| 75 |
|
eqid |
⊢ ( 1r ‘ 𝐺 ) = ( 1r ‘ 𝐺 ) |
| 76 |
74 75
|
ringidval |
⊢ ( 1r ‘ 𝐺 ) = ( 0g ‘ ( mulGrp ‘ 𝐺 ) ) |
| 77 |
72 73 76
|
3eqtr3g |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 0g ‘ ( mulGrp ‘ 𝐸 ) ) = ( 0g ‘ ( mulGrp ‘ 𝐺 ) ) ) |
| 78 |
63 11
|
mgpbas |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ ( mulGrp ‘ 𝐸 ) ) |
| 79 |
15 78
|
sseqtrdi |
⊢ ( 𝜑 → 𝑅 ⊆ ( Base ‘ ( mulGrp ‘ 𝐸 ) ) ) |
| 80 |
79
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ⊆ ( Base ‘ ( mulGrp ‘ 𝐸 ) ) ) |
| 81 |
14
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑅 ↔ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ) |
| 82 |
81
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 ∈ 𝑅 ) |
| 83 |
82
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑥 ∈ 𝑅 ) |
| 84 |
65 77 80 58 83
|
ressmulgnn0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐺 ) ) 𝑥 ) = ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) |
| 85 |
74 27
|
mgpbas |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ ( mulGrp ‘ 𝐺 ) ) |
| 86 |
1
|
subrgring |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝐸 ) → 𝐺 ∈ Ring ) |
| 87 |
74
|
ringmgp |
⊢ ( 𝐺 ∈ Ring → ( mulGrp ‘ 𝐺 ) ∈ Mnd ) |
| 88 |
8 86 87
|
3syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝐺 ) ∈ Mnd ) |
| 89 |
88
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( mulGrp ‘ 𝐺 ) ∈ Mnd ) |
| 90 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 91 |
85 44 89 58 90
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐺 ) ) 𝑥 ) ∈ ( Base ‘ 𝐺 ) ) |
| 92 |
84 91
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ∈ ( Base ‘ 𝐺 ) ) |
| 93 |
51 12 13
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 = ( Base ‘ 𝐺 ) ) |
| 94 |
92 93
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ∈ 𝑅 ) |
| 95 |
22 51 62 94
|
subrgmcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ∈ 𝑅 ) |
| 96 |
95
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) : ℕ0 ⟶ 𝑅 ) |
| 97 |
|
subrgsubg |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝐸 ) → 𝑅 ∈ ( SubGrp ‘ 𝐸 ) ) |
| 98 |
|
eqid |
⊢ ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐸 ) |
| 99 |
98
|
subg0cl |
⊢ ( 𝑅 ∈ ( SubGrp ‘ 𝐸 ) → ( 0g ‘ 𝐸 ) ∈ 𝑅 ) |
| 100 |
8 97 99
|
3syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐸 ) ∈ 𝑅 ) |
| 101 |
100
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 0g ‘ 𝐸 ) ∈ 𝑅 ) |
| 102 |
7
|
crnggrpd |
⊢ ( 𝜑 → 𝐸 ∈ Grp ) |
| 103 |
102
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐸 ) ) → 𝐸 ∈ Grp ) |
| 104 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐸 ) ) → 𝑦 ∈ ( Base ‘ 𝐸 ) ) |
| 105 |
11 46 98 103 104
|
grplidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐸 ) ) → ( ( 0g ‘ 𝐸 ) ( +g ‘ 𝐸 ) 𝑦 ) = 𝑦 ) |
| 106 |
11 46 98 103 104
|
grpridd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐸 ) ) → ( 𝑦 ( +g ‘ 𝐸 ) ( 0g ‘ 𝐸 ) ) = 𝑦 ) |
| 107 |
105 106
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐸 ) ) → ( ( ( 0g ‘ 𝐸 ) ( +g ‘ 𝐸 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐸 ) ( 0g ‘ 𝐸 ) ) = 𝑦 ) ) |
| 108 |
11 46 1 47 49 50 96 101 107
|
gsumress |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐸 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) ) ) |
| 109 |
1 22
|
ressmulr |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝐸 ) → ( .r ‘ 𝐸 ) = ( .r ‘ 𝐺 ) ) |
| 110 |
8 109
|
syl |
⊢ ( 𝜑 → ( .r ‘ 𝐸 ) = ( .r ‘ 𝐺 ) ) |
| 111 |
110
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( .r ‘ 𝐸 ) = ( .r ‘ 𝐺 ) ) |
| 112 |
111
|
oveqd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐺 ) ) 𝑥 ) ) = ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ( .r ‘ 𝐺 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐺 ) ) 𝑥 ) ) ) |
| 113 |
84
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐺 ) ) 𝑥 ) ) = ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) |
| 114 |
112 113
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ( .r ‘ 𝐺 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐺 ) ) 𝑥 ) ) = ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) |
| 115 |
114
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ( .r ‘ 𝐺 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐺 ) ) 𝑥 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) ) |
| 116 |
115
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐺 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ( .r ‘ 𝐺 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐺 ) ) 𝑥 ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) ) ) |
| 117 |
108 116
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐸 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ( .r ‘ 𝐺 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐺 ) ) 𝑥 ) ) ) ) ) |
| 118 |
117
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝐸 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ( .r ‘ 𝐺 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐺 ) ) 𝑥 ) ) ) ) ) ) |
| 119 |
45 118
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐹 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝐸 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑘 ) ( .r ‘ 𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) ) ) ) |
| 120 |
17 26 119
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐹 ) = ( ( 𝑂 ‘ 𝐹 ) ↾ 𝑅 ) ) |