Metamath Proof Explorer


Theorem ressply1evls1

Description: Subring evaluation of a univariate polynomial is the same as the subring evaluation in the bigger ring. (Contributed by Thierry Arnoux, 14-Nov-2025)

Ref Expression
Hypotheses ressply1evls1.1 𝐺 = ( 𝐸s 𝑅 )
ressply1evls1.2 𝑂 = ( 𝐸 evalSub1 𝑆 )
ressply1evls1.3 𝑄 = ( 𝐺 evalSub1 𝑆 )
ressply1evls1.4 𝑃 = ( Poly1𝐾 )
ressply1evls1.5 𝐾 = ( 𝐸s 𝑆 )
ressply1evls1.6 𝐵 = ( Base ‘ 𝑃 )
ressply1evls1.7 ( 𝜑𝐸 ∈ CRing )
ressply1evls1.8 ( 𝜑𝑅 ∈ ( SubRing ‘ 𝐸 ) )
ressply1evls1.9 ( 𝜑𝑆 ∈ ( SubRing ‘ 𝐺 ) )
ressply1evls1.10 ( 𝜑𝐹𝐵 )
Assertion ressply1evls1 ( 𝜑 → ( 𝑄𝐹 ) = ( ( 𝑂𝐹 ) ↾ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 ressply1evls1.1 𝐺 = ( 𝐸s 𝑅 )
2 ressply1evls1.2 𝑂 = ( 𝐸 evalSub1 𝑆 )
3 ressply1evls1.3 𝑄 = ( 𝐺 evalSub1 𝑆 )
4 ressply1evls1.4 𝑃 = ( Poly1𝐾 )
5 ressply1evls1.5 𝐾 = ( 𝐸s 𝑆 )
6 ressply1evls1.6 𝐵 = ( Base ‘ 𝑃 )
7 ressply1evls1.7 ( 𝜑𝐸 ∈ CRing )
8 ressply1evls1.8 ( 𝜑𝑅 ∈ ( SubRing ‘ 𝐸 ) )
9 ressply1evls1.9 ( 𝜑𝑆 ∈ ( SubRing ‘ 𝐺 ) )
10 ressply1evls1.10 ( 𝜑𝐹𝐵 )
11 eqid ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 )
12 11 subrgss ( 𝑅 ∈ ( SubRing ‘ 𝐸 ) → 𝑅 ⊆ ( Base ‘ 𝐸 ) )
13 1 11 ressbas2 ( 𝑅 ⊆ ( Base ‘ 𝐸 ) → 𝑅 = ( Base ‘ 𝐺 ) )
14 8 12 13 3syl ( 𝜑𝑅 = ( Base ‘ 𝐺 ) )
15 8 12 syl ( 𝜑𝑅 ⊆ ( Base ‘ 𝐸 ) )
16 14 15 eqsstrrd ( 𝜑 → ( Base ‘ 𝐺 ) ⊆ ( Base ‘ 𝐸 ) )
17 16 resmptd ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐸 ) ↦ ( 𝐸 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) ) ) ↾ ( Base ‘ 𝐺 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝐸 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) ) ) )
18 1 subsubrg ( 𝑅 ∈ ( SubRing ‘ 𝐸 ) → ( 𝑆 ∈ ( SubRing ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑆𝑅 ) ) )
19 18 biimpa ( ( 𝑅 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑆 ∈ ( SubRing ‘ 𝐺 ) ) → ( 𝑆 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑆𝑅 ) )
20 8 9 19 syl2anc ( 𝜑 → ( 𝑆 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑆𝑅 ) )
21 20 simpld ( 𝜑𝑆 ∈ ( SubRing ‘ 𝐸 ) )
22 eqid ( .r𝐸 ) = ( .r𝐸 )
23 eqid ( .g ‘ ( mulGrp ‘ 𝐸 ) ) = ( .g ‘ ( mulGrp ‘ 𝐸 ) )
24 eqid ( coe1𝐹 ) = ( coe1𝐹 )
25 2 11 4 5 6 7 21 10 22 23 24 evls1fpws ( 𝜑 → ( 𝑂𝐹 ) = ( 𝑥 ∈ ( Base ‘ 𝐸 ) ↦ ( 𝐸 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) ) ) )
26 25 14 reseq12d ( 𝜑 → ( ( 𝑂𝐹 ) ↾ 𝑅 ) = ( ( 𝑥 ∈ ( Base ‘ 𝐸 ) ↦ ( 𝐸 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) ) ) ↾ ( Base ‘ 𝐺 ) ) )
27 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
28 eqid ( Poly1 ‘ ( 𝐺s 𝑆 ) ) = ( Poly1 ‘ ( 𝐺s 𝑆 ) )
29 eqid ( 𝐺s 𝑆 ) = ( 𝐺s 𝑆 )
30 eqid ( Base ‘ ( Poly1 ‘ ( 𝐺s 𝑆 ) ) ) = ( Base ‘ ( Poly1 ‘ ( 𝐺s 𝑆 ) ) )
31 1 subrgcrng ( ( 𝐸 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝐸 ) ) → 𝐺 ∈ CRing )
32 7 8 31 syl2anc ( 𝜑𝐺 ∈ CRing )
33 20 simprd ( 𝜑𝑆𝑅 )
34 ressabs ( ( 𝑅 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝑆𝑅 ) → ( ( 𝐸s 𝑅 ) ↾s 𝑆 ) = ( 𝐸s 𝑆 ) )
35 8 33 34 syl2anc ( 𝜑 → ( ( 𝐸s 𝑅 ) ↾s 𝑆 ) = ( 𝐸s 𝑆 ) )
36 1 oveq1i ( 𝐺s 𝑆 ) = ( ( 𝐸s 𝑅 ) ↾s 𝑆 )
37 35 36 5 3eqtr4g ( 𝜑 → ( 𝐺s 𝑆 ) = 𝐾 )
38 37 fveq2d ( 𝜑 → ( Poly1 ‘ ( 𝐺s 𝑆 ) ) = ( Poly1𝐾 ) )
39 38 4 eqtr4di ( 𝜑 → ( Poly1 ‘ ( 𝐺s 𝑆 ) ) = 𝑃 )
40 39 fveq2d ( 𝜑 → ( Base ‘ ( Poly1 ‘ ( 𝐺s 𝑆 ) ) ) = ( Base ‘ 𝑃 ) )
41 40 6 eqtr4di ( 𝜑 → ( Base ‘ ( Poly1 ‘ ( 𝐺s 𝑆 ) ) ) = 𝐵 )
42 10 41 eleqtrrd ( 𝜑𝐹 ∈ ( Base ‘ ( Poly1 ‘ ( 𝐺s 𝑆 ) ) ) )
43 eqid ( .r𝐺 ) = ( .r𝐺 )
44 eqid ( .g ‘ ( mulGrp ‘ 𝐺 ) ) = ( .g ‘ ( mulGrp ‘ 𝐺 ) )
45 3 27 28 29 30 32 9 42 43 44 24 evls1fpws ( 𝜑 → ( 𝑄𝐹 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝐺 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐺 ) ) 𝑥 ) ) ) ) ) )
46 eqid ( +g𝐸 ) = ( +g𝐸 )
47 7 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝐸 ∈ CRing )
48 nn0ex 0 ∈ V
49 48 a1i ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) → ℕ0 ∈ V )
50 15 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑅 ⊆ ( Base ‘ 𝐸 ) )
51 8 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ ( SubRing ‘ 𝐸 ) )
52 33 15 sstrd ( 𝜑𝑆 ⊆ ( Base ‘ 𝐸 ) )
53 5 11 ressbas2 ( 𝑆 ⊆ ( Base ‘ 𝐸 ) → 𝑆 = ( Base ‘ 𝐾 ) )
54 52 53 syl ( 𝜑𝑆 = ( Base ‘ 𝐾 ) )
55 54 33 eqsstrrd ( 𝜑 → ( Base ‘ 𝐾 ) ⊆ 𝑅 )
56 55 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( Base ‘ 𝐾 ) ⊆ 𝑅 )
57 10 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝐹𝐵 )
58 simpr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 )
59 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
60 24 6 4 59 coe1fvalcl ( ( 𝐹𝐵𝑘 ∈ ℕ0 ) → ( ( coe1𝐹 ) ‘ 𝑘 ) ∈ ( Base ‘ 𝐾 ) )
61 57 58 60 syl2anc ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1𝐹 ) ‘ 𝑘 ) ∈ ( Base ‘ 𝐾 ) )
62 56 61 sseldd ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1𝐹 ) ‘ 𝑘 ) ∈ 𝑅 )
63 eqid ( mulGrp ‘ 𝐸 ) = ( mulGrp ‘ 𝐸 )
64 1 63 mgpress ( ( 𝐸 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝐸 ) ) → ( ( mulGrp ‘ 𝐸 ) ↾s 𝑅 ) = ( mulGrp ‘ 𝐺 ) )
65 47 51 64 syl2an2r ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( mulGrp ‘ 𝐸 ) ↾s 𝑅 ) = ( mulGrp ‘ 𝐺 ) )
66 7 crngringd ( 𝜑𝐸 ∈ Ring )
67 eqid ( 1r𝐸 ) = ( 1r𝐸 )
68 67 subrg1cl ( 𝑅 ∈ ( SubRing ‘ 𝐸 ) → ( 1r𝐸 ) ∈ 𝑅 )
69 8 68 syl ( 𝜑 → ( 1r𝐸 ) ∈ 𝑅 )
70 1 11 67 ress1r ( ( 𝐸 ∈ Ring ∧ ( 1r𝐸 ) ∈ 𝑅𝑅 ⊆ ( Base ‘ 𝐸 ) ) → ( 1r𝐸 ) = ( 1r𝐺 ) )
71 66 69 15 70 syl3anc ( 𝜑 → ( 1r𝐸 ) = ( 1r𝐺 ) )
72 71 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 1r𝐸 ) = ( 1r𝐺 ) )
73 63 67 ringidval ( 1r𝐸 ) = ( 0g ‘ ( mulGrp ‘ 𝐸 ) )
74 eqid ( mulGrp ‘ 𝐺 ) = ( mulGrp ‘ 𝐺 )
75 eqid ( 1r𝐺 ) = ( 1r𝐺 )
76 74 75 ringidval ( 1r𝐺 ) = ( 0g ‘ ( mulGrp ‘ 𝐺 ) )
77 72 73 76 3eqtr3g ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 0g ‘ ( mulGrp ‘ 𝐸 ) ) = ( 0g ‘ ( mulGrp ‘ 𝐺 ) ) )
78 63 11 mgpbas ( Base ‘ 𝐸 ) = ( Base ‘ ( mulGrp ‘ 𝐸 ) )
79 15 78 sseqtrdi ( 𝜑𝑅 ⊆ ( Base ‘ ( mulGrp ‘ 𝐸 ) ) )
80 79 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ⊆ ( Base ‘ ( mulGrp ‘ 𝐸 ) ) )
81 14 eleq2d ( 𝜑 → ( 𝑥𝑅𝑥 ∈ ( Base ‘ 𝐺 ) ) )
82 81 biimpar ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥𝑅 )
83 82 adantr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑥𝑅 )
84 65 77 80 58 83 ressmulgnn0d ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐺 ) ) 𝑥 ) = ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) )
85 74 27 mgpbas ( Base ‘ 𝐺 ) = ( Base ‘ ( mulGrp ‘ 𝐺 ) )
86 1 subrgring ( 𝑅 ∈ ( SubRing ‘ 𝐸 ) → 𝐺 ∈ Ring )
87 74 ringmgp ( 𝐺 ∈ Ring → ( mulGrp ‘ 𝐺 ) ∈ Mnd )
88 8 86 87 3syl ( 𝜑 → ( mulGrp ‘ 𝐺 ) ∈ Mnd )
89 88 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( mulGrp ‘ 𝐺 ) ∈ Mnd )
90 simplr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) )
91 85 44 89 58 90 mulgnn0cld ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐺 ) ) 𝑥 ) ∈ ( Base ‘ 𝐺 ) )
92 84 91 eqeltrrd ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ∈ ( Base ‘ 𝐺 ) )
93 51 12 13 3syl ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 = ( Base ‘ 𝐺 ) )
94 92 93 eleqtrrd ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ∈ 𝑅 )
95 22 51 62 94 subrgmcld ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ∈ 𝑅 )
96 95 fmpttd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) : ℕ0𝑅 )
97 subrgsubg ( 𝑅 ∈ ( SubRing ‘ 𝐸 ) → 𝑅 ∈ ( SubGrp ‘ 𝐸 ) )
98 eqid ( 0g𝐸 ) = ( 0g𝐸 )
99 98 subg0cl ( 𝑅 ∈ ( SubGrp ‘ 𝐸 ) → ( 0g𝐸 ) ∈ 𝑅 )
100 8 97 99 3syl ( 𝜑 → ( 0g𝐸 ) ∈ 𝑅 )
101 100 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 0g𝐸 ) ∈ 𝑅 )
102 7 crnggrpd ( 𝜑𝐸 ∈ Grp )
103 102 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐸 ) ) → 𝐸 ∈ Grp )
104 simpr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐸 ) ) → 𝑦 ∈ ( Base ‘ 𝐸 ) )
105 11 46 98 103 104 grplidd ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐸 ) ) → ( ( 0g𝐸 ) ( +g𝐸 ) 𝑦 ) = 𝑦 )
106 11 46 98 103 104 grpridd ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐸 ) ) → ( 𝑦 ( +g𝐸 ) ( 0g𝐸 ) ) = 𝑦 )
107 105 106 jca ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐸 ) ) → ( ( ( 0g𝐸 ) ( +g𝐸 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g𝐸 ) ( 0g𝐸 ) ) = 𝑦 ) )
108 11 46 1 47 49 50 96 101 107 gsumress ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐸 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) ) )
109 1 22 ressmulr ( 𝑅 ∈ ( SubRing ‘ 𝐸 ) → ( .r𝐸 ) = ( .r𝐺 ) )
110 8 109 syl ( 𝜑 → ( .r𝐸 ) = ( .r𝐺 ) )
111 110 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( .r𝐸 ) = ( .r𝐺 ) )
112 111 oveqd ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐺 ) ) 𝑥 ) ) = ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝐺 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐺 ) ) 𝑥 ) ) )
113 84 oveq2d ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐺 ) ) 𝑥 ) ) = ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) )
114 112 113 eqtr3d ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝐺 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐺 ) ) 𝑥 ) ) = ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) )
115 114 mpteq2dva ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝐺 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐺 ) ) 𝑥 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) )
116 115 oveq2d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐺 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝐺 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐺 ) ) 𝑥 ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) ) )
117 108 116 eqtr4d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐸 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝐺 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐺 ) ) 𝑥 ) ) ) ) )
118 117 mpteq2dva ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝐸 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝐺 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐺 ) ) 𝑥 ) ) ) ) ) )
119 45 118 eqtr4d ( 𝜑 → ( 𝑄𝐹 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝐸 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝐸 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑥 ) ) ) ) ) )
120 17 26 119 3eqtr4rd ( 𝜑 → ( 𝑄𝐹 ) = ( ( 𝑂𝐹 ) ↾ 𝑅 ) )