| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressply1evls1.1 |
|- G = ( E |`s R ) |
| 2 |
|
ressply1evls1.2 |
|- O = ( E evalSub1 S ) |
| 3 |
|
ressply1evls1.3 |
|- Q = ( G evalSub1 S ) |
| 4 |
|
ressply1evls1.4 |
|- P = ( Poly1 ` K ) |
| 5 |
|
ressply1evls1.5 |
|- K = ( E |`s S ) |
| 6 |
|
ressply1evls1.6 |
|- B = ( Base ` P ) |
| 7 |
|
ressply1evls1.7 |
|- ( ph -> E e. CRing ) |
| 8 |
|
ressply1evls1.8 |
|- ( ph -> R e. ( SubRing ` E ) ) |
| 9 |
|
ressply1evls1.9 |
|- ( ph -> S e. ( SubRing ` G ) ) |
| 10 |
|
ressply1evls1.10 |
|- ( ph -> F e. B ) |
| 11 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 12 |
11
|
subrgss |
|- ( R e. ( SubRing ` E ) -> R C_ ( Base ` E ) ) |
| 13 |
1 11
|
ressbas2 |
|- ( R C_ ( Base ` E ) -> R = ( Base ` G ) ) |
| 14 |
8 12 13
|
3syl |
|- ( ph -> R = ( Base ` G ) ) |
| 15 |
8 12
|
syl |
|- ( ph -> R C_ ( Base ` E ) ) |
| 16 |
14 15
|
eqsstrrd |
|- ( ph -> ( Base ` G ) C_ ( Base ` E ) ) |
| 17 |
16
|
resmptd |
|- ( ph -> ( ( x e. ( Base ` E ) |-> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) ) |` ( Base ` G ) ) = ( x e. ( Base ` G ) |-> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) ) ) |
| 18 |
1
|
subsubrg |
|- ( R e. ( SubRing ` E ) -> ( S e. ( SubRing ` G ) <-> ( S e. ( SubRing ` E ) /\ S C_ R ) ) ) |
| 19 |
18
|
biimpa |
|- ( ( R e. ( SubRing ` E ) /\ S e. ( SubRing ` G ) ) -> ( S e. ( SubRing ` E ) /\ S C_ R ) ) |
| 20 |
8 9 19
|
syl2anc |
|- ( ph -> ( S e. ( SubRing ` E ) /\ S C_ R ) ) |
| 21 |
20
|
simpld |
|- ( ph -> S e. ( SubRing ` E ) ) |
| 22 |
|
eqid |
|- ( .r ` E ) = ( .r ` E ) |
| 23 |
|
eqid |
|- ( .g ` ( mulGrp ` E ) ) = ( .g ` ( mulGrp ` E ) ) |
| 24 |
|
eqid |
|- ( coe1 ` F ) = ( coe1 ` F ) |
| 25 |
2 11 4 5 6 7 21 10 22 23 24
|
evls1fpws |
|- ( ph -> ( O ` F ) = ( x e. ( Base ` E ) |-> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) ) ) |
| 26 |
25 14
|
reseq12d |
|- ( ph -> ( ( O ` F ) |` R ) = ( ( x e. ( Base ` E ) |-> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) ) |` ( Base ` G ) ) ) |
| 27 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 28 |
|
eqid |
|- ( Poly1 ` ( G |`s S ) ) = ( Poly1 ` ( G |`s S ) ) |
| 29 |
|
eqid |
|- ( G |`s S ) = ( G |`s S ) |
| 30 |
|
eqid |
|- ( Base ` ( Poly1 ` ( G |`s S ) ) ) = ( Base ` ( Poly1 ` ( G |`s S ) ) ) |
| 31 |
1
|
subrgcrng |
|- ( ( E e. CRing /\ R e. ( SubRing ` E ) ) -> G e. CRing ) |
| 32 |
7 8 31
|
syl2anc |
|- ( ph -> G e. CRing ) |
| 33 |
20
|
simprd |
|- ( ph -> S C_ R ) |
| 34 |
|
ressabs |
|- ( ( R e. ( SubRing ` E ) /\ S C_ R ) -> ( ( E |`s R ) |`s S ) = ( E |`s S ) ) |
| 35 |
8 33 34
|
syl2anc |
|- ( ph -> ( ( E |`s R ) |`s S ) = ( E |`s S ) ) |
| 36 |
1
|
oveq1i |
|- ( G |`s S ) = ( ( E |`s R ) |`s S ) |
| 37 |
35 36 5
|
3eqtr4g |
|- ( ph -> ( G |`s S ) = K ) |
| 38 |
37
|
fveq2d |
|- ( ph -> ( Poly1 ` ( G |`s S ) ) = ( Poly1 ` K ) ) |
| 39 |
38 4
|
eqtr4di |
|- ( ph -> ( Poly1 ` ( G |`s S ) ) = P ) |
| 40 |
39
|
fveq2d |
|- ( ph -> ( Base ` ( Poly1 ` ( G |`s S ) ) ) = ( Base ` P ) ) |
| 41 |
40 6
|
eqtr4di |
|- ( ph -> ( Base ` ( Poly1 ` ( G |`s S ) ) ) = B ) |
| 42 |
10 41
|
eleqtrrd |
|- ( ph -> F e. ( Base ` ( Poly1 ` ( G |`s S ) ) ) ) |
| 43 |
|
eqid |
|- ( .r ` G ) = ( .r ` G ) |
| 44 |
|
eqid |
|- ( .g ` ( mulGrp ` G ) ) = ( .g ` ( mulGrp ` G ) ) |
| 45 |
3 27 28 29 30 32 9 42 43 44 24
|
evls1fpws |
|- ( ph -> ( Q ` F ) = ( x e. ( Base ` G ) |-> ( G gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` G ) ( k ( .g ` ( mulGrp ` G ) ) x ) ) ) ) ) ) |
| 46 |
|
eqid |
|- ( +g ` E ) = ( +g ` E ) |
| 47 |
7
|
adantr |
|- ( ( ph /\ x e. ( Base ` G ) ) -> E e. CRing ) |
| 48 |
|
nn0ex |
|- NN0 e. _V |
| 49 |
48
|
a1i |
|- ( ( ph /\ x e. ( Base ` G ) ) -> NN0 e. _V ) |
| 50 |
15
|
adantr |
|- ( ( ph /\ x e. ( Base ` G ) ) -> R C_ ( Base ` E ) ) |
| 51 |
8
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> R e. ( SubRing ` E ) ) |
| 52 |
33 15
|
sstrd |
|- ( ph -> S C_ ( Base ` E ) ) |
| 53 |
5 11
|
ressbas2 |
|- ( S C_ ( Base ` E ) -> S = ( Base ` K ) ) |
| 54 |
52 53
|
syl |
|- ( ph -> S = ( Base ` K ) ) |
| 55 |
54 33
|
eqsstrrd |
|- ( ph -> ( Base ` K ) C_ R ) |
| 56 |
55
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( Base ` K ) C_ R ) |
| 57 |
10
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> F e. B ) |
| 58 |
|
simpr |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> k e. NN0 ) |
| 59 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 60 |
24 6 4 59
|
coe1fvalcl |
|- ( ( F e. B /\ k e. NN0 ) -> ( ( coe1 ` F ) ` k ) e. ( Base ` K ) ) |
| 61 |
57 58 60
|
syl2anc |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( ( coe1 ` F ) ` k ) e. ( Base ` K ) ) |
| 62 |
56 61
|
sseldd |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( ( coe1 ` F ) ` k ) e. R ) |
| 63 |
|
eqid |
|- ( mulGrp ` E ) = ( mulGrp ` E ) |
| 64 |
1 63
|
mgpress |
|- ( ( E e. CRing /\ R e. ( SubRing ` E ) ) -> ( ( mulGrp ` E ) |`s R ) = ( mulGrp ` G ) ) |
| 65 |
47 51 64
|
syl2an2r |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( ( mulGrp ` E ) |`s R ) = ( mulGrp ` G ) ) |
| 66 |
7
|
crngringd |
|- ( ph -> E e. Ring ) |
| 67 |
|
eqid |
|- ( 1r ` E ) = ( 1r ` E ) |
| 68 |
67
|
subrg1cl |
|- ( R e. ( SubRing ` E ) -> ( 1r ` E ) e. R ) |
| 69 |
8 68
|
syl |
|- ( ph -> ( 1r ` E ) e. R ) |
| 70 |
1 11 67
|
ress1r |
|- ( ( E e. Ring /\ ( 1r ` E ) e. R /\ R C_ ( Base ` E ) ) -> ( 1r ` E ) = ( 1r ` G ) ) |
| 71 |
66 69 15 70
|
syl3anc |
|- ( ph -> ( 1r ` E ) = ( 1r ` G ) ) |
| 72 |
71
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( 1r ` E ) = ( 1r ` G ) ) |
| 73 |
63 67
|
ringidval |
|- ( 1r ` E ) = ( 0g ` ( mulGrp ` E ) ) |
| 74 |
|
eqid |
|- ( mulGrp ` G ) = ( mulGrp ` G ) |
| 75 |
|
eqid |
|- ( 1r ` G ) = ( 1r ` G ) |
| 76 |
74 75
|
ringidval |
|- ( 1r ` G ) = ( 0g ` ( mulGrp ` G ) ) |
| 77 |
72 73 76
|
3eqtr3g |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( 0g ` ( mulGrp ` E ) ) = ( 0g ` ( mulGrp ` G ) ) ) |
| 78 |
63 11
|
mgpbas |
|- ( Base ` E ) = ( Base ` ( mulGrp ` E ) ) |
| 79 |
15 78
|
sseqtrdi |
|- ( ph -> R C_ ( Base ` ( mulGrp ` E ) ) ) |
| 80 |
79
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> R C_ ( Base ` ( mulGrp ` E ) ) ) |
| 81 |
14
|
eleq2d |
|- ( ph -> ( x e. R <-> x e. ( Base ` G ) ) ) |
| 82 |
81
|
biimpar |
|- ( ( ph /\ x e. ( Base ` G ) ) -> x e. R ) |
| 83 |
82
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> x e. R ) |
| 84 |
65 77 80 58 83
|
ressmulgnn0d |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( k ( .g ` ( mulGrp ` G ) ) x ) = ( k ( .g ` ( mulGrp ` E ) ) x ) ) |
| 85 |
74 27
|
mgpbas |
|- ( Base ` G ) = ( Base ` ( mulGrp ` G ) ) |
| 86 |
1
|
subrgring |
|- ( R e. ( SubRing ` E ) -> G e. Ring ) |
| 87 |
74
|
ringmgp |
|- ( G e. Ring -> ( mulGrp ` G ) e. Mnd ) |
| 88 |
8 86 87
|
3syl |
|- ( ph -> ( mulGrp ` G ) e. Mnd ) |
| 89 |
88
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( mulGrp ` G ) e. Mnd ) |
| 90 |
|
simplr |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> x e. ( Base ` G ) ) |
| 91 |
85 44 89 58 90
|
mulgnn0cld |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( k ( .g ` ( mulGrp ` G ) ) x ) e. ( Base ` G ) ) |
| 92 |
84 91
|
eqeltrrd |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( k ( .g ` ( mulGrp ` E ) ) x ) e. ( Base ` G ) ) |
| 93 |
51 12 13
|
3syl |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> R = ( Base ` G ) ) |
| 94 |
92 93
|
eleqtrrd |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( k ( .g ` ( mulGrp ` E ) ) x ) e. R ) |
| 95 |
22 51 62 94
|
subrgmcld |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) e. R ) |
| 96 |
95
|
fmpttd |
|- ( ( ph /\ x e. ( Base ` G ) ) -> ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) : NN0 --> R ) |
| 97 |
|
subrgsubg |
|- ( R e. ( SubRing ` E ) -> R e. ( SubGrp ` E ) ) |
| 98 |
|
eqid |
|- ( 0g ` E ) = ( 0g ` E ) |
| 99 |
98
|
subg0cl |
|- ( R e. ( SubGrp ` E ) -> ( 0g ` E ) e. R ) |
| 100 |
8 97 99
|
3syl |
|- ( ph -> ( 0g ` E ) e. R ) |
| 101 |
100
|
adantr |
|- ( ( ph /\ x e. ( Base ` G ) ) -> ( 0g ` E ) e. R ) |
| 102 |
7
|
crnggrpd |
|- ( ph -> E e. Grp ) |
| 103 |
102
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` E ) ) -> E e. Grp ) |
| 104 |
|
simpr |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` E ) ) -> y e. ( Base ` E ) ) |
| 105 |
11 46 98 103 104
|
grplidd |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` E ) ) -> ( ( 0g ` E ) ( +g ` E ) y ) = y ) |
| 106 |
11 46 98 103 104
|
grpridd |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` E ) ) -> ( y ( +g ` E ) ( 0g ` E ) ) = y ) |
| 107 |
105 106
|
jca |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` E ) ) -> ( ( ( 0g ` E ) ( +g ` E ) y ) = y /\ ( y ( +g ` E ) ( 0g ` E ) ) = y ) ) |
| 108 |
11 46 1 47 49 50 96 101 107
|
gsumress |
|- ( ( ph /\ x e. ( Base ` G ) ) -> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) = ( G gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) ) |
| 109 |
1 22
|
ressmulr |
|- ( R e. ( SubRing ` E ) -> ( .r ` E ) = ( .r ` G ) ) |
| 110 |
8 109
|
syl |
|- ( ph -> ( .r ` E ) = ( .r ` G ) ) |
| 111 |
110
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( .r ` E ) = ( .r ` G ) ) |
| 112 |
111
|
oveqd |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` G ) ) x ) ) = ( ( ( coe1 ` F ) ` k ) ( .r ` G ) ( k ( .g ` ( mulGrp ` G ) ) x ) ) ) |
| 113 |
84
|
oveq2d |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` G ) ) x ) ) = ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) |
| 114 |
112 113
|
eqtr3d |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` G ) ( k ( .g ` ( mulGrp ` G ) ) x ) ) = ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) |
| 115 |
114
|
mpteq2dva |
|- ( ( ph /\ x e. ( Base ` G ) ) -> ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` G ) ( k ( .g ` ( mulGrp ` G ) ) x ) ) ) = ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) |
| 116 |
115
|
oveq2d |
|- ( ( ph /\ x e. ( Base ` G ) ) -> ( G gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` G ) ( k ( .g ` ( mulGrp ` G ) ) x ) ) ) ) = ( G gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) ) |
| 117 |
108 116
|
eqtr4d |
|- ( ( ph /\ x e. ( Base ` G ) ) -> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) = ( G gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` G ) ( k ( .g ` ( mulGrp ` G ) ) x ) ) ) ) ) |
| 118 |
117
|
mpteq2dva |
|- ( ph -> ( x e. ( Base ` G ) |-> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) ) = ( x e. ( Base ` G ) |-> ( G gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` G ) ( k ( .g ` ( mulGrp ` G ) ) x ) ) ) ) ) ) |
| 119 |
45 118
|
eqtr4d |
|- ( ph -> ( Q ` F ) = ( x e. ( Base ` G ) |-> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) ) ) |
| 120 |
17 26 119
|
3eqtr4rd |
|- ( ph -> ( Q ` F ) = ( ( O ` F ) |` R ) ) |