Metamath Proof Explorer


Theorem ressply1evls1

Description: Subring evaluation of a univariate polynomial is the same as the subring evaluation in the bigger ring. (Contributed by Thierry Arnoux, 14-Nov-2025)

Ref Expression
Hypotheses ressply1evls1.1
|- G = ( E |`s R )
ressply1evls1.2
|- O = ( E evalSub1 S )
ressply1evls1.3
|- Q = ( G evalSub1 S )
ressply1evls1.4
|- P = ( Poly1 ` K )
ressply1evls1.5
|- K = ( E |`s S )
ressply1evls1.6
|- B = ( Base ` P )
ressply1evls1.7
|- ( ph -> E e. CRing )
ressply1evls1.8
|- ( ph -> R e. ( SubRing ` E ) )
ressply1evls1.9
|- ( ph -> S e. ( SubRing ` G ) )
ressply1evls1.10
|- ( ph -> F e. B )
Assertion ressply1evls1
|- ( ph -> ( Q ` F ) = ( ( O ` F ) |` R ) )

Proof

Step Hyp Ref Expression
1 ressply1evls1.1
 |-  G = ( E |`s R )
2 ressply1evls1.2
 |-  O = ( E evalSub1 S )
3 ressply1evls1.3
 |-  Q = ( G evalSub1 S )
4 ressply1evls1.4
 |-  P = ( Poly1 ` K )
5 ressply1evls1.5
 |-  K = ( E |`s S )
6 ressply1evls1.6
 |-  B = ( Base ` P )
7 ressply1evls1.7
 |-  ( ph -> E e. CRing )
8 ressply1evls1.8
 |-  ( ph -> R e. ( SubRing ` E ) )
9 ressply1evls1.9
 |-  ( ph -> S e. ( SubRing ` G ) )
10 ressply1evls1.10
 |-  ( ph -> F e. B )
11 eqid
 |-  ( Base ` E ) = ( Base ` E )
12 11 subrgss
 |-  ( R e. ( SubRing ` E ) -> R C_ ( Base ` E ) )
13 1 11 ressbas2
 |-  ( R C_ ( Base ` E ) -> R = ( Base ` G ) )
14 8 12 13 3syl
 |-  ( ph -> R = ( Base ` G ) )
15 8 12 syl
 |-  ( ph -> R C_ ( Base ` E ) )
16 14 15 eqsstrrd
 |-  ( ph -> ( Base ` G ) C_ ( Base ` E ) )
17 16 resmptd
 |-  ( ph -> ( ( x e. ( Base ` E ) |-> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) ) |` ( Base ` G ) ) = ( x e. ( Base ` G ) |-> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) ) )
18 1 subsubrg
 |-  ( R e. ( SubRing ` E ) -> ( S e. ( SubRing ` G ) <-> ( S e. ( SubRing ` E ) /\ S C_ R ) ) )
19 18 biimpa
 |-  ( ( R e. ( SubRing ` E ) /\ S e. ( SubRing ` G ) ) -> ( S e. ( SubRing ` E ) /\ S C_ R ) )
20 8 9 19 syl2anc
 |-  ( ph -> ( S e. ( SubRing ` E ) /\ S C_ R ) )
21 20 simpld
 |-  ( ph -> S e. ( SubRing ` E ) )
22 eqid
 |-  ( .r ` E ) = ( .r ` E )
23 eqid
 |-  ( .g ` ( mulGrp ` E ) ) = ( .g ` ( mulGrp ` E ) )
24 eqid
 |-  ( coe1 ` F ) = ( coe1 ` F )
25 2 11 4 5 6 7 21 10 22 23 24 evls1fpws
 |-  ( ph -> ( O ` F ) = ( x e. ( Base ` E ) |-> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) ) )
26 25 14 reseq12d
 |-  ( ph -> ( ( O ` F ) |` R ) = ( ( x e. ( Base ` E ) |-> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) ) |` ( Base ` G ) ) )
27 eqid
 |-  ( Base ` G ) = ( Base ` G )
28 eqid
 |-  ( Poly1 ` ( G |`s S ) ) = ( Poly1 ` ( G |`s S ) )
29 eqid
 |-  ( G |`s S ) = ( G |`s S )
30 eqid
 |-  ( Base ` ( Poly1 ` ( G |`s S ) ) ) = ( Base ` ( Poly1 ` ( G |`s S ) ) )
31 1 subrgcrng
 |-  ( ( E e. CRing /\ R e. ( SubRing ` E ) ) -> G e. CRing )
32 7 8 31 syl2anc
 |-  ( ph -> G e. CRing )
33 20 simprd
 |-  ( ph -> S C_ R )
34 ressabs
 |-  ( ( R e. ( SubRing ` E ) /\ S C_ R ) -> ( ( E |`s R ) |`s S ) = ( E |`s S ) )
35 8 33 34 syl2anc
 |-  ( ph -> ( ( E |`s R ) |`s S ) = ( E |`s S ) )
36 1 oveq1i
 |-  ( G |`s S ) = ( ( E |`s R ) |`s S )
37 35 36 5 3eqtr4g
 |-  ( ph -> ( G |`s S ) = K )
38 37 fveq2d
 |-  ( ph -> ( Poly1 ` ( G |`s S ) ) = ( Poly1 ` K ) )
39 38 4 eqtr4di
 |-  ( ph -> ( Poly1 ` ( G |`s S ) ) = P )
40 39 fveq2d
 |-  ( ph -> ( Base ` ( Poly1 ` ( G |`s S ) ) ) = ( Base ` P ) )
41 40 6 eqtr4di
 |-  ( ph -> ( Base ` ( Poly1 ` ( G |`s S ) ) ) = B )
42 10 41 eleqtrrd
 |-  ( ph -> F e. ( Base ` ( Poly1 ` ( G |`s S ) ) ) )
43 eqid
 |-  ( .r ` G ) = ( .r ` G )
44 eqid
 |-  ( .g ` ( mulGrp ` G ) ) = ( .g ` ( mulGrp ` G ) )
45 3 27 28 29 30 32 9 42 43 44 24 evls1fpws
 |-  ( ph -> ( Q ` F ) = ( x e. ( Base ` G ) |-> ( G gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` G ) ( k ( .g ` ( mulGrp ` G ) ) x ) ) ) ) ) )
46 eqid
 |-  ( +g ` E ) = ( +g ` E )
47 7 adantr
 |-  ( ( ph /\ x e. ( Base ` G ) ) -> E e. CRing )
48 nn0ex
 |-  NN0 e. _V
49 48 a1i
 |-  ( ( ph /\ x e. ( Base ` G ) ) -> NN0 e. _V )
50 15 adantr
 |-  ( ( ph /\ x e. ( Base ` G ) ) -> R C_ ( Base ` E ) )
51 8 ad2antrr
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> R e. ( SubRing ` E ) )
52 33 15 sstrd
 |-  ( ph -> S C_ ( Base ` E ) )
53 5 11 ressbas2
 |-  ( S C_ ( Base ` E ) -> S = ( Base ` K ) )
54 52 53 syl
 |-  ( ph -> S = ( Base ` K ) )
55 54 33 eqsstrrd
 |-  ( ph -> ( Base ` K ) C_ R )
56 55 ad2antrr
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( Base ` K ) C_ R )
57 10 ad2antrr
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> F e. B )
58 simpr
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> k e. NN0 )
59 eqid
 |-  ( Base ` K ) = ( Base ` K )
60 24 6 4 59 coe1fvalcl
 |-  ( ( F e. B /\ k e. NN0 ) -> ( ( coe1 ` F ) ` k ) e. ( Base ` K ) )
61 57 58 60 syl2anc
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( ( coe1 ` F ) ` k ) e. ( Base ` K ) )
62 56 61 sseldd
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( ( coe1 ` F ) ` k ) e. R )
63 eqid
 |-  ( mulGrp ` E ) = ( mulGrp ` E )
64 1 63 mgpress
 |-  ( ( E e. CRing /\ R e. ( SubRing ` E ) ) -> ( ( mulGrp ` E ) |`s R ) = ( mulGrp ` G ) )
65 47 51 64 syl2an2r
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( ( mulGrp ` E ) |`s R ) = ( mulGrp ` G ) )
66 7 crngringd
 |-  ( ph -> E e. Ring )
67 eqid
 |-  ( 1r ` E ) = ( 1r ` E )
68 67 subrg1cl
 |-  ( R e. ( SubRing ` E ) -> ( 1r ` E ) e. R )
69 8 68 syl
 |-  ( ph -> ( 1r ` E ) e. R )
70 1 11 67 ress1r
 |-  ( ( E e. Ring /\ ( 1r ` E ) e. R /\ R C_ ( Base ` E ) ) -> ( 1r ` E ) = ( 1r ` G ) )
71 66 69 15 70 syl3anc
 |-  ( ph -> ( 1r ` E ) = ( 1r ` G ) )
72 71 ad2antrr
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( 1r ` E ) = ( 1r ` G ) )
73 63 67 ringidval
 |-  ( 1r ` E ) = ( 0g ` ( mulGrp ` E ) )
74 eqid
 |-  ( mulGrp ` G ) = ( mulGrp ` G )
75 eqid
 |-  ( 1r ` G ) = ( 1r ` G )
76 74 75 ringidval
 |-  ( 1r ` G ) = ( 0g ` ( mulGrp ` G ) )
77 72 73 76 3eqtr3g
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( 0g ` ( mulGrp ` E ) ) = ( 0g ` ( mulGrp ` G ) ) )
78 63 11 mgpbas
 |-  ( Base ` E ) = ( Base ` ( mulGrp ` E ) )
79 15 78 sseqtrdi
 |-  ( ph -> R C_ ( Base ` ( mulGrp ` E ) ) )
80 79 ad2antrr
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> R C_ ( Base ` ( mulGrp ` E ) ) )
81 14 eleq2d
 |-  ( ph -> ( x e. R <-> x e. ( Base ` G ) ) )
82 81 biimpar
 |-  ( ( ph /\ x e. ( Base ` G ) ) -> x e. R )
83 82 adantr
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> x e. R )
84 65 77 80 58 83 ressmulgnn0d
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( k ( .g ` ( mulGrp ` G ) ) x ) = ( k ( .g ` ( mulGrp ` E ) ) x ) )
85 74 27 mgpbas
 |-  ( Base ` G ) = ( Base ` ( mulGrp ` G ) )
86 1 subrgring
 |-  ( R e. ( SubRing ` E ) -> G e. Ring )
87 74 ringmgp
 |-  ( G e. Ring -> ( mulGrp ` G ) e. Mnd )
88 8 86 87 3syl
 |-  ( ph -> ( mulGrp ` G ) e. Mnd )
89 88 ad2antrr
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( mulGrp ` G ) e. Mnd )
90 simplr
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> x e. ( Base ` G ) )
91 85 44 89 58 90 mulgnn0cld
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( k ( .g ` ( mulGrp ` G ) ) x ) e. ( Base ` G ) )
92 84 91 eqeltrrd
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( k ( .g ` ( mulGrp ` E ) ) x ) e. ( Base ` G ) )
93 51 12 13 3syl
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> R = ( Base ` G ) )
94 92 93 eleqtrrd
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( k ( .g ` ( mulGrp ` E ) ) x ) e. R )
95 22 51 62 94 subrgmcld
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) e. R )
96 95 fmpttd
 |-  ( ( ph /\ x e. ( Base ` G ) ) -> ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) : NN0 --> R )
97 subrgsubg
 |-  ( R e. ( SubRing ` E ) -> R e. ( SubGrp ` E ) )
98 eqid
 |-  ( 0g ` E ) = ( 0g ` E )
99 98 subg0cl
 |-  ( R e. ( SubGrp ` E ) -> ( 0g ` E ) e. R )
100 8 97 99 3syl
 |-  ( ph -> ( 0g ` E ) e. R )
101 100 adantr
 |-  ( ( ph /\ x e. ( Base ` G ) ) -> ( 0g ` E ) e. R )
102 7 crnggrpd
 |-  ( ph -> E e. Grp )
103 102 ad2antrr
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` E ) ) -> E e. Grp )
104 simpr
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` E ) ) -> y e. ( Base ` E ) )
105 11 46 98 103 104 grplidd
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` E ) ) -> ( ( 0g ` E ) ( +g ` E ) y ) = y )
106 11 46 98 103 104 grpridd
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` E ) ) -> ( y ( +g ` E ) ( 0g ` E ) ) = y )
107 105 106 jca
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` E ) ) -> ( ( ( 0g ` E ) ( +g ` E ) y ) = y /\ ( y ( +g ` E ) ( 0g ` E ) ) = y ) )
108 11 46 1 47 49 50 96 101 107 gsumress
 |-  ( ( ph /\ x e. ( Base ` G ) ) -> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) = ( G gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) )
109 1 22 ressmulr
 |-  ( R e. ( SubRing ` E ) -> ( .r ` E ) = ( .r ` G ) )
110 8 109 syl
 |-  ( ph -> ( .r ` E ) = ( .r ` G ) )
111 110 ad2antrr
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( .r ` E ) = ( .r ` G ) )
112 111 oveqd
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` G ) ) x ) ) = ( ( ( coe1 ` F ) ` k ) ( .r ` G ) ( k ( .g ` ( mulGrp ` G ) ) x ) ) )
113 84 oveq2d
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` G ) ) x ) ) = ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) )
114 112 113 eqtr3d
 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ k e. NN0 ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` G ) ( k ( .g ` ( mulGrp ` G ) ) x ) ) = ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) )
115 114 mpteq2dva
 |-  ( ( ph /\ x e. ( Base ` G ) ) -> ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` G ) ( k ( .g ` ( mulGrp ` G ) ) x ) ) ) = ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) )
116 115 oveq2d
 |-  ( ( ph /\ x e. ( Base ` G ) ) -> ( G gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` G ) ( k ( .g ` ( mulGrp ` G ) ) x ) ) ) ) = ( G gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) )
117 108 116 eqtr4d
 |-  ( ( ph /\ x e. ( Base ` G ) ) -> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) = ( G gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` G ) ( k ( .g ` ( mulGrp ` G ) ) x ) ) ) ) )
118 117 mpteq2dva
 |-  ( ph -> ( x e. ( Base ` G ) |-> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) ) = ( x e. ( Base ` G ) |-> ( G gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` G ) ( k ( .g ` ( mulGrp ` G ) ) x ) ) ) ) ) )
119 45 118 eqtr4d
 |-  ( ph -> ( Q ` F ) = ( x e. ( Base ` G ) |-> ( E gsum ( k e. NN0 |-> ( ( ( coe1 ` F ) ` k ) ( .r ` E ) ( k ( .g ` ( mulGrp ` E ) ) x ) ) ) ) ) )
120 17 26 119 3eqtr4rd
 |-  ( ph -> ( Q ` F ) = ( ( O ` F ) |` R ) )