Metamath Proof Explorer


Theorem ressply1evls1

Description: Subring evaluation of a univariate polynomial is the same as the subring evaluation in the bigger ring. (Contributed by Thierry Arnoux, 14-Nov-2025)

Ref Expression
Hypotheses ressply1evls1.1 G = E 𝑠 R
ressply1evls1.2 O = E evalSub 1 S
ressply1evls1.3 Q = G evalSub 1 S
ressply1evls1.4 P = Poly 1 K
ressply1evls1.5 K = E 𝑠 S
ressply1evls1.6 B = Base P
ressply1evls1.7 φ E CRing
ressply1evls1.8 φ R SubRing E
ressply1evls1.9 φ S SubRing G
ressply1evls1.10 φ F B
Assertion ressply1evls1 φ Q F = O F R

Proof

Step Hyp Ref Expression
1 ressply1evls1.1 G = E 𝑠 R
2 ressply1evls1.2 O = E evalSub 1 S
3 ressply1evls1.3 Q = G evalSub 1 S
4 ressply1evls1.4 P = Poly 1 K
5 ressply1evls1.5 K = E 𝑠 S
6 ressply1evls1.6 B = Base P
7 ressply1evls1.7 φ E CRing
8 ressply1evls1.8 φ R SubRing E
9 ressply1evls1.9 φ S SubRing G
10 ressply1evls1.10 φ F B
11 eqid Base E = Base E
12 11 subrgss R SubRing E R Base E
13 1 11 ressbas2 R Base E R = Base G
14 8 12 13 3syl φ R = Base G
15 8 12 syl φ R Base E
16 14 15 eqsstrrd φ Base G Base E
17 16 resmptd φ x Base E E k 0 coe 1 F k E k mulGrp E x Base G = x Base G E k 0 coe 1 F k E k mulGrp E x
18 1 subsubrg R SubRing E S SubRing G S SubRing E S R
19 18 biimpa R SubRing E S SubRing G S SubRing E S R
20 8 9 19 syl2anc φ S SubRing E S R
21 20 simpld φ S SubRing E
22 eqid E = E
23 eqid mulGrp E = mulGrp E
24 eqid coe 1 F = coe 1 F
25 2 11 4 5 6 7 21 10 22 23 24 evls1fpws φ O F = x Base E E k 0 coe 1 F k E k mulGrp E x
26 25 14 reseq12d φ O F R = x Base E E k 0 coe 1 F k E k mulGrp E x Base G
27 eqid Base G = Base G
28 eqid Poly 1 G 𝑠 S = Poly 1 G 𝑠 S
29 eqid G 𝑠 S = G 𝑠 S
30 eqid Base Poly 1 G 𝑠 S = Base Poly 1 G 𝑠 S
31 1 subrgcrng E CRing R SubRing E G CRing
32 7 8 31 syl2anc φ G CRing
33 20 simprd φ S R
34 ressabs R SubRing E S R E 𝑠 R 𝑠 S = E 𝑠 S
35 8 33 34 syl2anc φ E 𝑠 R 𝑠 S = E 𝑠 S
36 1 oveq1i G 𝑠 S = E 𝑠 R 𝑠 S
37 35 36 5 3eqtr4g φ G 𝑠 S = K
38 37 fveq2d φ Poly 1 G 𝑠 S = Poly 1 K
39 38 4 eqtr4di φ Poly 1 G 𝑠 S = P
40 39 fveq2d φ Base Poly 1 G 𝑠 S = Base P
41 40 6 eqtr4di φ Base Poly 1 G 𝑠 S = B
42 10 41 eleqtrrd φ F Base Poly 1 G 𝑠 S
43 eqid G = G
44 eqid mulGrp G = mulGrp G
45 3 27 28 29 30 32 9 42 43 44 24 evls1fpws φ Q F = x Base G G k 0 coe 1 F k G k mulGrp G x
46 eqid + E = + E
47 7 adantr φ x Base G E CRing
48 nn0ex 0 V
49 48 a1i φ x Base G 0 V
50 15 adantr φ x Base G R Base E
51 8 ad2antrr φ x Base G k 0 R SubRing E
52 33 15 sstrd φ S Base E
53 5 11 ressbas2 S Base E S = Base K
54 52 53 syl φ S = Base K
55 54 33 eqsstrrd φ Base K R
56 55 ad2antrr φ x Base G k 0 Base K R
57 10 ad2antrr φ x Base G k 0 F B
58 simpr φ x Base G k 0 k 0
59 eqid Base K = Base K
60 24 6 4 59 coe1fvalcl F B k 0 coe 1 F k Base K
61 57 58 60 syl2anc φ x Base G k 0 coe 1 F k Base K
62 56 61 sseldd φ x Base G k 0 coe 1 F k R
63 eqid mulGrp E = mulGrp E
64 1 63 mgpress E CRing R SubRing E mulGrp E 𝑠 R = mulGrp G
65 47 51 64 syl2an2r φ x Base G k 0 mulGrp E 𝑠 R = mulGrp G
66 7 crngringd φ E Ring
67 eqid 1 E = 1 E
68 67 subrg1cl R SubRing E 1 E R
69 8 68 syl φ 1 E R
70 1 11 67 ress1r E Ring 1 E R R Base E 1 E = 1 G
71 66 69 15 70 syl3anc φ 1 E = 1 G
72 71 ad2antrr φ x Base G k 0 1 E = 1 G
73 63 67 ringidval 1 E = 0 mulGrp E
74 eqid mulGrp G = mulGrp G
75 eqid 1 G = 1 G
76 74 75 ringidval 1 G = 0 mulGrp G
77 72 73 76 3eqtr3g φ x Base G k 0 0 mulGrp E = 0 mulGrp G
78 63 11 mgpbas Base E = Base mulGrp E
79 15 78 sseqtrdi φ R Base mulGrp E
80 79 ad2antrr φ x Base G k 0 R Base mulGrp E
81 14 eleq2d φ x R x Base G
82 81 biimpar φ x Base G x R
83 82 adantr φ x Base G k 0 x R
84 65 77 80 58 83 ressmulgnn0d φ x Base G k 0 k mulGrp G x = k mulGrp E x
85 74 27 mgpbas Base G = Base mulGrp G
86 1 subrgring R SubRing E G Ring
87 74 ringmgp G Ring mulGrp G Mnd
88 8 86 87 3syl φ mulGrp G Mnd
89 88 ad2antrr φ x Base G k 0 mulGrp G Mnd
90 simplr φ x Base G k 0 x Base G
91 85 44 89 58 90 mulgnn0cld φ x Base G k 0 k mulGrp G x Base G
92 84 91 eqeltrrd φ x Base G k 0 k mulGrp E x Base G
93 51 12 13 3syl φ x Base G k 0 R = Base G
94 92 93 eleqtrrd φ x Base G k 0 k mulGrp E x R
95 22 51 62 94 subrgmcld φ x Base G k 0 coe 1 F k E k mulGrp E x R
96 95 fmpttd φ x Base G k 0 coe 1 F k E k mulGrp E x : 0 R
97 subrgsubg R SubRing E R SubGrp E
98 eqid 0 E = 0 E
99 98 subg0cl R SubGrp E 0 E R
100 8 97 99 3syl φ 0 E R
101 100 adantr φ x Base G 0 E R
102 7 crnggrpd φ E Grp
103 102 ad2antrr φ x Base G y Base E E Grp
104 simpr φ x Base G y Base E y Base E
105 11 46 98 103 104 grplidd φ x Base G y Base E 0 E + E y = y
106 11 46 98 103 104 grpridd φ x Base G y Base E y + E 0 E = y
107 105 106 jca φ x Base G y Base E 0 E + E y = y y + E 0 E = y
108 11 46 1 47 49 50 96 101 107 gsumress φ x Base G E k 0 coe 1 F k E k mulGrp E x = G k 0 coe 1 F k E k mulGrp E x
109 1 22 ressmulr R SubRing E E = G
110 8 109 syl φ E = G
111 110 ad2antrr φ x Base G k 0 E = G
112 111 oveqd φ x Base G k 0 coe 1 F k E k mulGrp G x = coe 1 F k G k mulGrp G x
113 84 oveq2d φ x Base G k 0 coe 1 F k E k mulGrp G x = coe 1 F k E k mulGrp E x
114 112 113 eqtr3d φ x Base G k 0 coe 1 F k G k mulGrp G x = coe 1 F k E k mulGrp E x
115 114 mpteq2dva φ x Base G k 0 coe 1 F k G k mulGrp G x = k 0 coe 1 F k E k mulGrp E x
116 115 oveq2d φ x Base G G k 0 coe 1 F k G k mulGrp G x = G k 0 coe 1 F k E k mulGrp E x
117 108 116 eqtr4d φ x Base G E k 0 coe 1 F k E k mulGrp E x = G k 0 coe 1 F k G k mulGrp G x
118 117 mpteq2dva φ x Base G E k 0 coe 1 F k E k mulGrp E x = x Base G G k 0 coe 1 F k G k mulGrp G x
119 45 118 eqtr4d φ Q F = x Base G E k 0 coe 1 F k E k mulGrp E x
120 17 26 119 3eqtr4rd φ Q F = O F R