| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressmulgnn0d.1 |
|
| 2 |
|
ressmulgnn0d.2 |
|
| 3 |
|
ressmulgnn0d.3 |
|
| 4 |
|
ressmulgnn0d.4 |
|
| 5 |
|
ressmulgnn0d.5 |
|
| 6 |
1
|
fveq2d |
|
| 7 |
6
|
oveqd |
|
| 8 |
7
|
adantr |
|
| 9 |
|
eqid |
|
| 10 |
3
|
adantr |
|
| 11 |
5
|
adantr |
|
| 12 |
|
simpr |
|
| 13 |
9 10 11 12
|
ressmulgnnd |
|
| 14 |
8 13
|
eqtr3d |
|
| 15 |
5
|
adantr |
|
| 16 |
|
eqid |
|
| 17 |
9 16
|
ressbas2 |
|
| 18 |
3 17
|
syl |
|
| 19 |
18
|
adantr |
|
| 20 |
15 19
|
eleqtrd |
|
| 21 |
|
eqid |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
21 22 23
|
mulg0 |
|
| 25 |
20 24
|
syl |
|
| 26 |
6
|
oveqd |
|
| 27 |
26
|
adantr |
|
| 28 |
1
|
adantr |
|
| 29 |
28
|
fveq2d |
|
| 30 |
2
|
adantr |
|
| 31 |
29 30
|
eqtr4d |
|
| 32 |
25 27 31
|
3eqtr3d |
|
| 33 |
|
simpr |
|
| 34 |
33
|
oveq1d |
|
| 35 |
3
|
adantr |
|
| 36 |
35 15
|
sseldd |
|
| 37 |
|
eqid |
|
| 38 |
|
eqid |
|
| 39 |
16 37 38
|
mulg0 |
|
| 40 |
36 39
|
syl |
|
| 41 |
32 34 40
|
3eqtr4d |
|
| 42 |
33
|
oveq1d |
|
| 43 |
41 42
|
eqtr4d |
|
| 44 |
|
elnn0 |
|
| 45 |
4 44
|
sylib |
|
| 46 |
14 43 45
|
mpjaodan |
|