Metamath Proof Explorer


Theorem ressmulgnn0d

Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 14-Jun-2017)

Ref Expression
Hypotheses ressmulgnn0d.1 φ G 𝑠 A = H
ressmulgnn0d.2 φ 0 G = 0 H
ressmulgnn0d.3 φ A Base G
ressmulgnn0d.4 φ N 0
ressmulgnn0d.5 φ X A
Assertion ressmulgnn0d φ N H X = N G X

Proof

Step Hyp Ref Expression
1 ressmulgnn0d.1 φ G 𝑠 A = H
2 ressmulgnn0d.2 φ 0 G = 0 H
3 ressmulgnn0d.3 φ A Base G
4 ressmulgnn0d.4 φ N 0
5 ressmulgnn0d.5 φ X A
6 1 fveq2d φ G 𝑠 A = H
7 6 oveqd φ N G 𝑠 A X = N H X
8 7 adantr φ N N G 𝑠 A X = N H X
9 eqid G 𝑠 A = G 𝑠 A
10 3 adantr φ N A Base G
11 5 adantr φ N X A
12 simpr φ N N
13 9 10 11 12 ressmulgnnd φ N N G 𝑠 A X = N G X
14 8 13 eqtr3d φ N N H X = N G X
15 5 adantr φ N = 0 X A
16 eqid Base G = Base G
17 9 16 ressbas2 A Base G A = Base G 𝑠 A
18 3 17 syl φ A = Base G 𝑠 A
19 18 adantr φ N = 0 A = Base G 𝑠 A
20 15 19 eleqtrd φ N = 0 X Base G 𝑠 A
21 eqid Base G 𝑠 A = Base G 𝑠 A
22 eqid 0 G 𝑠 A = 0 G 𝑠 A
23 eqid G 𝑠 A = G 𝑠 A
24 21 22 23 mulg0 X Base G 𝑠 A 0 G 𝑠 A X = 0 G 𝑠 A
25 20 24 syl φ N = 0 0 G 𝑠 A X = 0 G 𝑠 A
26 6 oveqd φ 0 G 𝑠 A X = 0 H X
27 26 adantr φ N = 0 0 G 𝑠 A X = 0 H X
28 1 adantr φ N = 0 G 𝑠 A = H
29 28 fveq2d φ N = 0 0 G 𝑠 A = 0 H
30 2 adantr φ N = 0 0 G = 0 H
31 29 30 eqtr4d φ N = 0 0 G 𝑠 A = 0 G
32 25 27 31 3eqtr3d φ N = 0 0 H X = 0 G
33 simpr φ N = 0 N = 0
34 33 oveq1d φ N = 0 N H X = 0 H X
35 3 adantr φ N = 0 A Base G
36 35 15 sseldd φ N = 0 X Base G
37 eqid 0 G = 0 G
38 eqid G = G
39 16 37 38 mulg0 X Base G 0 G X = 0 G
40 36 39 syl φ N = 0 0 G X = 0 G
41 32 34 40 3eqtr4d φ N = 0 N H X = 0 G X
42 33 oveq1d φ N = 0 N G X = 0 G X
43 41 42 eqtr4d φ N = 0 N H X = N G X
44 elnn0 N 0 N N = 0
45 4 44 sylib φ N N = 0
46 14 43 45 mpjaodan φ N H X = N G X