| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressmulgnn0d.1 |
⊢ ( 𝜑 → ( 𝐺 ↾s 𝐴 ) = 𝐻 ) |
| 2 |
|
ressmulgnn0d.2 |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 3 |
|
ressmulgnn0d.3 |
⊢ ( 𝜑 → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
| 4 |
|
ressmulgnn0d.4 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 5 |
|
ressmulgnn0d.5 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 6 |
1
|
fveq2d |
⊢ ( 𝜑 → ( .g ‘ ( 𝐺 ↾s 𝐴 ) ) = ( .g ‘ 𝐻 ) ) |
| 7 |
6
|
oveqd |
⊢ ( 𝜑 → ( 𝑁 ( .g ‘ ( 𝐺 ↾s 𝐴 ) ) 𝑋 ) = ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ( .g ‘ ( 𝐺 ↾s 𝐴 ) ) 𝑋 ) = ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) ) |
| 9 |
|
eqid |
⊢ ( 𝐺 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) |
| 10 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
| 11 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → 𝑋 ∈ 𝐴 ) |
| 12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) |
| 13 |
9 10 11 12
|
ressmulgnnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ( .g ‘ ( 𝐺 ↾s 𝐴 ) ) 𝑋 ) = ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) ) |
| 14 |
8 13
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) ) |
| 15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 𝑋 ∈ 𝐴 ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 17 |
9 16
|
ressbas2 |
⊢ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) → 𝐴 = ( Base ‘ ( 𝐺 ↾s 𝐴 ) ) ) |
| 18 |
3 17
|
syl |
⊢ ( 𝜑 → 𝐴 = ( Base ‘ ( 𝐺 ↾s 𝐴 ) ) ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 𝐴 = ( Base ‘ ( 𝐺 ↾s 𝐴 ) ) ) |
| 20 |
15 19
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 𝑋 ∈ ( Base ‘ ( 𝐺 ↾s 𝐴 ) ) ) |
| 21 |
|
eqid |
⊢ ( Base ‘ ( 𝐺 ↾s 𝐴 ) ) = ( Base ‘ ( 𝐺 ↾s 𝐴 ) ) |
| 22 |
|
eqid |
⊢ ( 0g ‘ ( 𝐺 ↾s 𝐴 ) ) = ( 0g ‘ ( 𝐺 ↾s 𝐴 ) ) |
| 23 |
|
eqid |
⊢ ( .g ‘ ( 𝐺 ↾s 𝐴 ) ) = ( .g ‘ ( 𝐺 ↾s 𝐴 ) ) |
| 24 |
21 22 23
|
mulg0 |
⊢ ( 𝑋 ∈ ( Base ‘ ( 𝐺 ↾s 𝐴 ) ) → ( 0 ( .g ‘ ( 𝐺 ↾s 𝐴 ) ) 𝑋 ) = ( 0g ‘ ( 𝐺 ↾s 𝐴 ) ) ) |
| 25 |
20 24
|
syl |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( 0 ( .g ‘ ( 𝐺 ↾s 𝐴 ) ) 𝑋 ) = ( 0g ‘ ( 𝐺 ↾s 𝐴 ) ) ) |
| 26 |
6
|
oveqd |
⊢ ( 𝜑 → ( 0 ( .g ‘ ( 𝐺 ↾s 𝐴 ) ) 𝑋 ) = ( 0 ( .g ‘ 𝐻 ) 𝑋 ) ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( 0 ( .g ‘ ( 𝐺 ↾s 𝐴 ) ) 𝑋 ) = ( 0 ( .g ‘ 𝐻 ) 𝑋 ) ) |
| 28 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( 𝐺 ↾s 𝐴 ) = 𝐻 ) |
| 29 |
28
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( 0g ‘ ( 𝐺 ↾s 𝐴 ) ) = ( 0g ‘ 𝐻 ) ) |
| 30 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 31 |
29 30
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( 0g ‘ ( 𝐺 ↾s 𝐴 ) ) = ( 0g ‘ 𝐺 ) ) |
| 32 |
25 27 31
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( 0 ( .g ‘ 𝐻 ) 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 33 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 𝑁 = 0 ) |
| 34 |
33
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 0 ( .g ‘ 𝐻 ) 𝑋 ) ) |
| 35 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
| 36 |
35 15
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
| 37 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 38 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
| 39 |
16 37 38
|
mulg0 |
⊢ ( 𝑋 ∈ ( Base ‘ 𝐺 ) → ( 0 ( .g ‘ 𝐺 ) 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 40 |
36 39
|
syl |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( 0 ( .g ‘ 𝐺 ) 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 41 |
32 34 40
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 0 ( .g ‘ 𝐺 ) 𝑋 ) ) |
| 42 |
33
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) = ( 0 ( .g ‘ 𝐺 ) 𝑋 ) ) |
| 43 |
41 42
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) ) |
| 44 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 45 |
4 44
|
sylib |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 46 |
14 43 45
|
mpjaodan |
⊢ ( 𝜑 → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) ) |