Metamath Proof Explorer


Theorem ressmulgnn0d

Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 14-Jun-2017)

Ref Expression
Hypotheses ressmulgnn0d.1 ( 𝜑 → ( 𝐺s 𝐴 ) = 𝐻 )
ressmulgnn0d.2 ( 𝜑 → ( 0g𝐺 ) = ( 0g𝐻 ) )
ressmulgnn0d.3 ( 𝜑𝐴 ⊆ ( Base ‘ 𝐺 ) )
ressmulgnn0d.4 ( 𝜑𝑁 ∈ ℕ0 )
ressmulgnn0d.5 ( 𝜑𝑋𝐴 )
Assertion ressmulgnn0d ( 𝜑 → ( 𝑁 ( .g𝐻 ) 𝑋 ) = ( 𝑁 ( .g𝐺 ) 𝑋 ) )

Proof

Step Hyp Ref Expression
1 ressmulgnn0d.1 ( 𝜑 → ( 𝐺s 𝐴 ) = 𝐻 )
2 ressmulgnn0d.2 ( 𝜑 → ( 0g𝐺 ) = ( 0g𝐻 ) )
3 ressmulgnn0d.3 ( 𝜑𝐴 ⊆ ( Base ‘ 𝐺 ) )
4 ressmulgnn0d.4 ( 𝜑𝑁 ∈ ℕ0 )
5 ressmulgnn0d.5 ( 𝜑𝑋𝐴 )
6 1 fveq2d ( 𝜑 → ( .g ‘ ( 𝐺s 𝐴 ) ) = ( .g𝐻 ) )
7 6 oveqd ( 𝜑 → ( 𝑁 ( .g ‘ ( 𝐺s 𝐴 ) ) 𝑋 ) = ( 𝑁 ( .g𝐻 ) 𝑋 ) )
8 7 adantr ( ( 𝜑𝑁 ∈ ℕ ) → ( 𝑁 ( .g ‘ ( 𝐺s 𝐴 ) ) 𝑋 ) = ( 𝑁 ( .g𝐻 ) 𝑋 ) )
9 eqid ( 𝐺s 𝐴 ) = ( 𝐺s 𝐴 )
10 3 adantr ( ( 𝜑𝑁 ∈ ℕ ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) )
11 5 adantr ( ( 𝜑𝑁 ∈ ℕ ) → 𝑋𝐴 )
12 simpr ( ( 𝜑𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ )
13 9 10 11 12 ressmulgnnd ( ( 𝜑𝑁 ∈ ℕ ) → ( 𝑁 ( .g ‘ ( 𝐺s 𝐴 ) ) 𝑋 ) = ( 𝑁 ( .g𝐺 ) 𝑋 ) )
14 8 13 eqtr3d ( ( 𝜑𝑁 ∈ ℕ ) → ( 𝑁 ( .g𝐻 ) 𝑋 ) = ( 𝑁 ( .g𝐺 ) 𝑋 ) )
15 5 adantr ( ( 𝜑𝑁 = 0 ) → 𝑋𝐴 )
16 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
17 9 16 ressbas2 ( 𝐴 ⊆ ( Base ‘ 𝐺 ) → 𝐴 = ( Base ‘ ( 𝐺s 𝐴 ) ) )
18 3 17 syl ( 𝜑𝐴 = ( Base ‘ ( 𝐺s 𝐴 ) ) )
19 18 adantr ( ( 𝜑𝑁 = 0 ) → 𝐴 = ( Base ‘ ( 𝐺s 𝐴 ) ) )
20 15 19 eleqtrd ( ( 𝜑𝑁 = 0 ) → 𝑋 ∈ ( Base ‘ ( 𝐺s 𝐴 ) ) )
21 eqid ( Base ‘ ( 𝐺s 𝐴 ) ) = ( Base ‘ ( 𝐺s 𝐴 ) )
22 eqid ( 0g ‘ ( 𝐺s 𝐴 ) ) = ( 0g ‘ ( 𝐺s 𝐴 ) )
23 eqid ( .g ‘ ( 𝐺s 𝐴 ) ) = ( .g ‘ ( 𝐺s 𝐴 ) )
24 21 22 23 mulg0 ( 𝑋 ∈ ( Base ‘ ( 𝐺s 𝐴 ) ) → ( 0 ( .g ‘ ( 𝐺s 𝐴 ) ) 𝑋 ) = ( 0g ‘ ( 𝐺s 𝐴 ) ) )
25 20 24 syl ( ( 𝜑𝑁 = 0 ) → ( 0 ( .g ‘ ( 𝐺s 𝐴 ) ) 𝑋 ) = ( 0g ‘ ( 𝐺s 𝐴 ) ) )
26 6 oveqd ( 𝜑 → ( 0 ( .g ‘ ( 𝐺s 𝐴 ) ) 𝑋 ) = ( 0 ( .g𝐻 ) 𝑋 ) )
27 26 adantr ( ( 𝜑𝑁 = 0 ) → ( 0 ( .g ‘ ( 𝐺s 𝐴 ) ) 𝑋 ) = ( 0 ( .g𝐻 ) 𝑋 ) )
28 1 adantr ( ( 𝜑𝑁 = 0 ) → ( 𝐺s 𝐴 ) = 𝐻 )
29 28 fveq2d ( ( 𝜑𝑁 = 0 ) → ( 0g ‘ ( 𝐺s 𝐴 ) ) = ( 0g𝐻 ) )
30 2 adantr ( ( 𝜑𝑁 = 0 ) → ( 0g𝐺 ) = ( 0g𝐻 ) )
31 29 30 eqtr4d ( ( 𝜑𝑁 = 0 ) → ( 0g ‘ ( 𝐺s 𝐴 ) ) = ( 0g𝐺 ) )
32 25 27 31 3eqtr3d ( ( 𝜑𝑁 = 0 ) → ( 0 ( .g𝐻 ) 𝑋 ) = ( 0g𝐺 ) )
33 simpr ( ( 𝜑𝑁 = 0 ) → 𝑁 = 0 )
34 33 oveq1d ( ( 𝜑𝑁 = 0 ) → ( 𝑁 ( .g𝐻 ) 𝑋 ) = ( 0 ( .g𝐻 ) 𝑋 ) )
35 3 adantr ( ( 𝜑𝑁 = 0 ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) )
36 35 15 sseldd ( ( 𝜑𝑁 = 0 ) → 𝑋 ∈ ( Base ‘ 𝐺 ) )
37 eqid ( 0g𝐺 ) = ( 0g𝐺 )
38 eqid ( .g𝐺 ) = ( .g𝐺 )
39 16 37 38 mulg0 ( 𝑋 ∈ ( Base ‘ 𝐺 ) → ( 0 ( .g𝐺 ) 𝑋 ) = ( 0g𝐺 ) )
40 36 39 syl ( ( 𝜑𝑁 = 0 ) → ( 0 ( .g𝐺 ) 𝑋 ) = ( 0g𝐺 ) )
41 32 34 40 3eqtr4d ( ( 𝜑𝑁 = 0 ) → ( 𝑁 ( .g𝐻 ) 𝑋 ) = ( 0 ( .g𝐺 ) 𝑋 ) )
42 33 oveq1d ( ( 𝜑𝑁 = 0 ) → ( 𝑁 ( .g𝐺 ) 𝑋 ) = ( 0 ( .g𝐺 ) 𝑋 ) )
43 41 42 eqtr4d ( ( 𝜑𝑁 = 0 ) → ( 𝑁 ( .g𝐻 ) 𝑋 ) = ( 𝑁 ( .g𝐺 ) 𝑋 ) )
44 elnn0 ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) )
45 4 44 sylib ( 𝜑 → ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) )
46 14 43 45 mpjaodan ( 𝜑 → ( 𝑁 ( .g𝐻 ) 𝑋 ) = ( 𝑁 ( .g𝐺 ) 𝑋 ) )