| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressmulgnnd.1 |
⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) |
| 2 |
|
ressmulgnnd.2 |
⊢ ( 𝜑 → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
| 3 |
|
ressmulgnnd.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 4 |
|
ressmulgnnd.4 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 5 |
4
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑁 ) |
| 6 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 𝑁 ∈ ℕ ) |
| 7 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 𝑋 ∈ 𝐴 ) |
| 8 |
|
eqid |
⊢ ( 𝐺 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 10 |
8 9
|
ressbas2 |
⊢ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) → 𝐴 = ( Base ‘ ( 𝐺 ↾s 𝐴 ) ) ) |
| 11 |
2 10
|
syl |
⊢ ( 𝜑 → 𝐴 = ( Base ‘ ( 𝐺 ↾s 𝐴 ) ) ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 𝐴 = ( Base ‘ ( 𝐺 ↾s 𝐴 ) ) ) |
| 13 |
|
eqcom |
⊢ ( 𝐻 = ( 𝐺 ↾s 𝐴 ) ↔ ( 𝐺 ↾s 𝐴 ) = 𝐻 ) |
| 14 |
1 13
|
mpbi |
⊢ ( 𝐺 ↾s 𝐴 ) = 𝐻 |
| 15 |
14
|
fveq2i |
⊢ ( Base ‘ ( 𝐺 ↾s 𝐴 ) ) = ( Base ‘ 𝐻 ) |
| 16 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( Base ‘ ( 𝐺 ↾s 𝐴 ) ) = ( Base ‘ 𝐻 ) ) |
| 17 |
12 16
|
eqtrd |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 𝐴 = ( Base ‘ 𝐻 ) ) |
| 18 |
7 17
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 𝑋 ∈ ( Base ‘ 𝐻 ) ) |
| 19 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 20 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
| 21 |
|
eqid |
⊢ ( .g ‘ 𝐻 ) = ( .g ‘ 𝐻 ) |
| 22 |
|
eqid |
⊢ seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) |
| 23 |
19 20 21 22
|
mulgnn |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( Base ‘ 𝐻 ) ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 24 |
6 18 23
|
syl2anc |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 25 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) ∈ V ) |
| 26 |
25 2
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 27 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 28 |
1 27
|
ressplusg |
⊢ ( 𝐴 ∈ V → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 29 |
26 28
|
syl |
⊢ ( 𝜑 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 30 |
29
|
eqcomd |
⊢ ( 𝜑 → ( +g ‘ 𝐻 ) = ( +g ‘ 𝐺 ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( +g ‘ 𝐻 ) = ( +g ‘ 𝐺 ) ) |
| 32 |
31
|
seqeq2d |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ) |
| 33 |
32
|
fveq1d |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 34 |
2 3
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
| 36 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
| 37 |
|
eqid |
⊢ seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) |
| 38 |
9 27 36 37
|
mulgnn |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 39 |
6 35 38
|
syl2anc |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 40 |
39
|
eqcomd |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) = ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) ) |
| 41 |
24 33 40
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) ) |
| 42 |
41
|
ex |
⊢ ( 𝜑 → ( 0 < 𝑁 → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) ) ) |
| 43 |
5 42
|
mpd |
⊢ ( 𝜑 → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) ) |