| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressmulgnnd.1 |
|- H = ( G |`s A ) |
| 2 |
|
ressmulgnnd.2 |
|- ( ph -> A C_ ( Base ` G ) ) |
| 3 |
|
ressmulgnnd.3 |
|- ( ph -> X e. A ) |
| 4 |
|
ressmulgnnd.4 |
|- ( ph -> N e. NN ) |
| 5 |
4
|
nngt0d |
|- ( ph -> 0 < N ) |
| 6 |
4
|
adantr |
|- ( ( ph /\ 0 < N ) -> N e. NN ) |
| 7 |
3
|
adantr |
|- ( ( ph /\ 0 < N ) -> X e. A ) |
| 8 |
|
eqid |
|- ( G |`s A ) = ( G |`s A ) |
| 9 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 10 |
8 9
|
ressbas2 |
|- ( A C_ ( Base ` G ) -> A = ( Base ` ( G |`s A ) ) ) |
| 11 |
2 10
|
syl |
|- ( ph -> A = ( Base ` ( G |`s A ) ) ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ 0 < N ) -> A = ( Base ` ( G |`s A ) ) ) |
| 13 |
|
eqcom |
|- ( H = ( G |`s A ) <-> ( G |`s A ) = H ) |
| 14 |
1 13
|
mpbi |
|- ( G |`s A ) = H |
| 15 |
14
|
fveq2i |
|- ( Base ` ( G |`s A ) ) = ( Base ` H ) |
| 16 |
15
|
a1i |
|- ( ( ph /\ 0 < N ) -> ( Base ` ( G |`s A ) ) = ( Base ` H ) ) |
| 17 |
12 16
|
eqtrd |
|- ( ( ph /\ 0 < N ) -> A = ( Base ` H ) ) |
| 18 |
7 17
|
eleqtrd |
|- ( ( ph /\ 0 < N ) -> X e. ( Base ` H ) ) |
| 19 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
| 20 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
| 21 |
|
eqid |
|- ( .g ` H ) = ( .g ` H ) |
| 22 |
|
eqid |
|- seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) |
| 23 |
19 20 21 22
|
mulgnn |
|- ( ( N e. NN /\ X e. ( Base ` H ) ) -> ( N ( .g ` H ) X ) = ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) ) |
| 24 |
6 18 23
|
syl2anc |
|- ( ( ph /\ 0 < N ) -> ( N ( .g ` H ) X ) = ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) ) |
| 25 |
|
fvexd |
|- ( ph -> ( Base ` G ) e. _V ) |
| 26 |
25 2
|
ssexd |
|- ( ph -> A e. _V ) |
| 27 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 28 |
1 27
|
ressplusg |
|- ( A e. _V -> ( +g ` G ) = ( +g ` H ) ) |
| 29 |
26 28
|
syl |
|- ( ph -> ( +g ` G ) = ( +g ` H ) ) |
| 30 |
29
|
eqcomd |
|- ( ph -> ( +g ` H ) = ( +g ` G ) ) |
| 31 |
30
|
adantr |
|- ( ( ph /\ 0 < N ) -> ( +g ` H ) = ( +g ` G ) ) |
| 32 |
31
|
seqeq2d |
|- ( ( ph /\ 0 < N ) -> seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ) |
| 33 |
32
|
fveq1d |
|- ( ( ph /\ 0 < N ) -> ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) |
| 34 |
2 3
|
sseldd |
|- ( ph -> X e. ( Base ` G ) ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ 0 < N ) -> X e. ( Base ` G ) ) |
| 36 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
| 37 |
|
eqid |
|- seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) |
| 38 |
9 27 36 37
|
mulgnn |
|- ( ( N e. NN /\ X e. ( Base ` G ) ) -> ( N ( .g ` G ) X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) |
| 39 |
6 35 38
|
syl2anc |
|- ( ( ph /\ 0 < N ) -> ( N ( .g ` G ) X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) |
| 40 |
39
|
eqcomd |
|- ( ( ph /\ 0 < N ) -> ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) = ( N ( .g ` G ) X ) ) |
| 41 |
24 33 40
|
3eqtrd |
|- ( ( ph /\ 0 < N ) -> ( N ( .g ` H ) X ) = ( N ( .g ` G ) X ) ) |
| 42 |
41
|
ex |
|- ( ph -> ( 0 < N -> ( N ( .g ` H ) X ) = ( N ( .g ` G ) X ) ) ) |
| 43 |
5 42
|
mpd |
|- ( ph -> ( N ( .g ` H ) X ) = ( N ( .g ` G ) X ) ) |