| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressdeg1.h |
⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) |
| 2 |
|
ressdeg1.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
| 3 |
|
ressdeg1.u |
⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) |
| 4 |
|
ressdeg1.b |
⊢ 𝐵 = ( Base ‘ 𝑈 ) |
| 5 |
|
ressdeg1.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
| 6 |
|
ressdeg1.t |
⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
| 7 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 8 |
1 7
|
subrg0 |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝐻 ) ) |
| 9 |
6 8
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝐻 ) ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝑃 ) supp ( 0g ‘ 𝑅 ) ) = ( ( coe1 ‘ 𝑃 ) supp ( 0g ‘ 𝐻 ) ) ) |
| 11 |
10
|
supeq1d |
⊢ ( 𝜑 → sup ( ( ( coe1 ‘ 𝑃 ) supp ( 0g ‘ 𝑅 ) ) , ℝ* , < ) = sup ( ( ( coe1 ‘ 𝑃 ) supp ( 0g ‘ 𝐻 ) ) , ℝ* , < ) ) |
| 12 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
| 13 |
|
eqid |
⊢ ( PwSer1 ‘ 𝐻 ) = ( PwSer1 ‘ 𝐻 ) |
| 14 |
|
eqid |
⊢ ( Base ‘ ( PwSer1 ‘ 𝐻 ) ) = ( Base ‘ ( PwSer1 ‘ 𝐻 ) ) |
| 15 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
| 16 |
12 1 3 4 6 13 14 15
|
ressply1bas2 |
⊢ ( 𝜑 → 𝐵 = ( ( Base ‘ ( PwSer1 ‘ 𝐻 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) ) |
| 17 |
5 16
|
eleqtrd |
⊢ ( 𝜑 → 𝑃 ∈ ( ( Base ‘ ( PwSer1 ‘ 𝐻 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) ) |
| 18 |
17
|
elin2d |
⊢ ( 𝜑 → 𝑃 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 19 |
|
eqid |
⊢ ( coe1 ‘ 𝑃 ) = ( coe1 ‘ 𝑃 ) |
| 20 |
2 12 15 7 19
|
deg1val |
⊢ ( 𝑃 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) → ( 𝐷 ‘ 𝑃 ) = sup ( ( ( coe1 ‘ 𝑃 ) supp ( 0g ‘ 𝑅 ) ) , ℝ* , < ) ) |
| 21 |
18 20
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑃 ) = sup ( ( ( coe1 ‘ 𝑃 ) supp ( 0g ‘ 𝑅 ) ) , ℝ* , < ) ) |
| 22 |
|
eqid |
⊢ ( deg1 ‘ 𝐻 ) = ( deg1 ‘ 𝐻 ) |
| 23 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
| 24 |
22 3 4 23 19
|
deg1val |
⊢ ( 𝑃 ∈ 𝐵 → ( ( deg1 ‘ 𝐻 ) ‘ 𝑃 ) = sup ( ( ( coe1 ‘ 𝑃 ) supp ( 0g ‘ 𝐻 ) ) , ℝ* , < ) ) |
| 25 |
5 24
|
syl |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐻 ) ‘ 𝑃 ) = sup ( ( ( coe1 ‘ 𝑃 ) supp ( 0g ‘ 𝐻 ) ) , ℝ* , < ) ) |
| 26 |
11 21 25
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑃 ) = ( ( deg1 ‘ 𝐻 ) ‘ 𝑃 ) ) |