| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1leb.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
| 2 |
|
deg1leb.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 3 |
|
deg1leb.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 4 |
|
deg1leb.y |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 5 |
|
deg1leb.a |
⊢ 𝐴 = ( coe1 ‘ 𝐹 ) |
| 6 |
1
|
deg1fval |
⊢ 𝐷 = ( 1o mDeg 𝑅 ) |
| 7 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
| 8 |
2 3
|
ply1bas |
⊢ 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 9 |
|
psr1baslem |
⊢ ( ℕ0 ↑m 1o ) = { 𝑦 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } |
| 10 |
|
tdeglem2 |
⊢ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) = ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( ℂfld Σg 𝑥 ) ) |
| 11 |
6 7 8 4 9 10
|
mdegval |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐷 ‘ 𝐹 ) = sup ( ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) “ ( 𝐹 supp 0 ) ) , ℝ* , < ) ) |
| 12 |
4
|
fvexi |
⊢ 0 ∈ V |
| 13 |
|
suppimacnv |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 0 ∈ V ) → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 14 |
12 13
|
mpan2 |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 15 |
14
|
imaeq2d |
⊢ ( 𝐹 ∈ 𝐵 → ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) “ ( 𝐹 supp 0 ) ) = ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) “ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) |
| 16 |
|
imaco |
⊢ ( ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ ◡ 𝐹 ) “ ( V ∖ { 0 } ) ) = ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) “ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
| 17 |
15 16
|
eqtr4di |
⊢ ( 𝐹 ∈ 𝐵 → ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) “ ( 𝐹 supp 0 ) ) = ( ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ ◡ 𝐹 ) “ ( V ∖ { 0 } ) ) ) |
| 18 |
|
df1o2 |
⊢ 1o = { ∅ } |
| 19 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 20 |
|
0ex |
⊢ ∅ ∈ V |
| 21 |
|
eqid |
⊢ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) = ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) |
| 22 |
18 19 20 21
|
mapsncnv |
⊢ ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) = ( 𝑦 ∈ ℕ0 ↦ ( 1o × { 𝑦 } ) ) |
| 23 |
5 3 2 22
|
coe1fval2 |
⊢ ( 𝐹 ∈ 𝐵 → 𝐴 = ( 𝐹 ∘ ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ) |
| 24 |
23
|
cnveqd |
⊢ ( 𝐹 ∈ 𝐵 → ◡ 𝐴 = ◡ ( 𝐹 ∘ ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ) |
| 25 |
|
cnvco |
⊢ ◡ ( 𝐹 ∘ ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) = ( ◡ ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ ◡ 𝐹 ) |
| 26 |
|
cocnvcnv1 |
⊢ ( ◡ ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ ◡ 𝐹 ) = ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ ◡ 𝐹 ) |
| 27 |
25 26
|
eqtri |
⊢ ◡ ( 𝐹 ∘ ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) = ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ ◡ 𝐹 ) |
| 28 |
24 27
|
eqtr2di |
⊢ ( 𝐹 ∈ 𝐵 → ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ ◡ 𝐹 ) = ◡ 𝐴 ) |
| 29 |
28
|
imaeq1d |
⊢ ( 𝐹 ∈ 𝐵 → ( ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ ◡ 𝐹 ) “ ( V ∖ { 0 } ) ) = ( ◡ 𝐴 “ ( V ∖ { 0 } ) ) ) |
| 30 |
17 29
|
eqtrd |
⊢ ( 𝐹 ∈ 𝐵 → ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) “ ( 𝐹 supp 0 ) ) = ( ◡ 𝐴 “ ( V ∖ { 0 } ) ) ) |
| 31 |
5
|
fvexi |
⊢ 𝐴 ∈ V |
| 32 |
|
suppimacnv |
⊢ ( ( 𝐴 ∈ V ∧ 0 ∈ V ) → ( 𝐴 supp 0 ) = ( ◡ 𝐴 “ ( V ∖ { 0 } ) ) ) |
| 33 |
32
|
eqcomd |
⊢ ( ( 𝐴 ∈ V ∧ 0 ∈ V ) → ( ◡ 𝐴 “ ( V ∖ { 0 } ) ) = ( 𝐴 supp 0 ) ) |
| 34 |
31 12 33
|
mp2an |
⊢ ( ◡ 𝐴 “ ( V ∖ { 0 } ) ) = ( 𝐴 supp 0 ) |
| 35 |
30 34
|
eqtrdi |
⊢ ( 𝐹 ∈ 𝐵 → ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) “ ( 𝐹 supp 0 ) ) = ( 𝐴 supp 0 ) ) |
| 36 |
35
|
supeq1d |
⊢ ( 𝐹 ∈ 𝐵 → sup ( ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) “ ( 𝐹 supp 0 ) ) , ℝ* , < ) = sup ( ( 𝐴 supp 0 ) , ℝ* , < ) ) |
| 37 |
11 36
|
eqtrd |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐷 ‘ 𝐹 ) = sup ( ( 𝐴 supp 0 ) , ℝ* , < ) ) |