Metamath Proof Explorer


Theorem deg1val

Description: Value of the univariate degree as a supremum. (Contributed by Stefan O'Rear, 29-Mar-2015) (Revised by AV, 25-Jul-2019)

Ref Expression
Hypotheses deg1leb.d 𝐷 = ( deg1𝑅 )
deg1leb.p 𝑃 = ( Poly1𝑅 )
deg1leb.b 𝐵 = ( Base ‘ 𝑃 )
deg1leb.y 0 = ( 0g𝑅 )
deg1leb.a 𝐴 = ( coe1𝐹 )
Assertion deg1val ( 𝐹𝐵 → ( 𝐷𝐹 ) = sup ( ( 𝐴 supp 0 ) , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 deg1leb.d 𝐷 = ( deg1𝑅 )
2 deg1leb.p 𝑃 = ( Poly1𝑅 )
3 deg1leb.b 𝐵 = ( Base ‘ 𝑃 )
4 deg1leb.y 0 = ( 0g𝑅 )
5 deg1leb.a 𝐴 = ( coe1𝐹 )
6 1 deg1fval 𝐷 = ( 1o mDeg 𝑅 )
7 eqid ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 )
8 eqid ( PwSer1𝑅 ) = ( PwSer1𝑅 )
9 2 8 3 ply1bas 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) )
10 psr1baslem ( ℕ0m 1o ) = { 𝑦 ∈ ( ℕ0m 1o ) ∣ ( 𝑦 “ ℕ ) ∈ Fin }
11 tdeglem2 ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) = ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( ℂfld Σg 𝑥 ) )
12 6 7 9 4 10 11 mdegval ( 𝐹𝐵 → ( 𝐷𝐹 ) = sup ( ( ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) “ ( 𝐹 supp 0 ) ) , ℝ* , < ) )
13 4 fvexi 0 ∈ V
14 suppimacnv ( ( 𝐹𝐵0 ∈ V ) → ( 𝐹 supp 0 ) = ( 𝐹 “ ( V ∖ { 0 } ) ) )
15 13 14 mpan2 ( 𝐹𝐵 → ( 𝐹 supp 0 ) = ( 𝐹 “ ( V ∖ { 0 } ) ) )
16 15 imaeq2d ( 𝐹𝐵 → ( ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) “ ( 𝐹 supp 0 ) ) = ( ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) “ ( 𝐹 “ ( V ∖ { 0 } ) ) ) )
17 imaco ( ( ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ 𝐹 ) “ ( V ∖ { 0 } ) ) = ( ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) “ ( 𝐹 “ ( V ∖ { 0 } ) ) )
18 16 17 eqtr4di ( 𝐹𝐵 → ( ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) “ ( 𝐹 supp 0 ) ) = ( ( ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ 𝐹 ) “ ( V ∖ { 0 } ) ) )
19 df1o2 1o = { ∅ }
20 nn0ex 0 ∈ V
21 0ex ∅ ∈ V
22 eqid ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) = ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) )
23 19 20 21 22 mapsncnv ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) = ( 𝑦 ∈ ℕ0 ↦ ( 1o × { 𝑦 } ) )
24 5 3 2 23 coe1fval2 ( 𝐹𝐵𝐴 = ( 𝐹 ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) )
25 24 cnveqd ( 𝐹𝐵 𝐴 = ( 𝐹 ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) )
26 cnvco ( 𝐹 ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) = ( ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ 𝐹 )
27 cocnvcnv1 ( ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ 𝐹 ) = ( ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ 𝐹 )
28 26 27 eqtri ( 𝐹 ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) = ( ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ 𝐹 )
29 25 28 eqtr2di ( 𝐹𝐵 → ( ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ 𝐹 ) = 𝐴 )
30 29 imaeq1d ( 𝐹𝐵 → ( ( ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ 𝐹 ) “ ( V ∖ { 0 } ) ) = ( 𝐴 “ ( V ∖ { 0 } ) ) )
31 18 30 eqtrd ( 𝐹𝐵 → ( ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) “ ( 𝐹 supp 0 ) ) = ( 𝐴 “ ( V ∖ { 0 } ) ) )
32 5 fvexi 𝐴 ∈ V
33 suppimacnv ( ( 𝐴 ∈ V ∧ 0 ∈ V ) → ( 𝐴 supp 0 ) = ( 𝐴 “ ( V ∖ { 0 } ) ) )
34 33 eqcomd ( ( 𝐴 ∈ V ∧ 0 ∈ V ) → ( 𝐴 “ ( V ∖ { 0 } ) ) = ( 𝐴 supp 0 ) )
35 32 13 34 mp2an ( 𝐴 “ ( V ∖ { 0 } ) ) = ( 𝐴 supp 0 )
36 31 35 eqtrdi ( 𝐹𝐵 → ( ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) “ ( 𝐹 supp 0 ) ) = ( 𝐴 supp 0 ) )
37 36 supeq1d ( 𝐹𝐵 → sup ( ( ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) “ ( 𝐹 supp 0 ) ) , ℝ* , < ) = sup ( ( 𝐴 supp 0 ) , ℝ* , < ) )
38 12 37 eqtrd ( 𝐹𝐵 → ( 𝐷𝐹 ) = sup ( ( 𝐴 supp 0 ) , ℝ* , < ) )