Metamath Proof Explorer


Theorem mdegval

Description: Value of the multivariate degree function at some particular polynomial. (Contributed by Stefan O'Rear, 19-Mar-2015) (Revised by AV, 25-Jun-2019)

Ref Expression
Hypotheses mdegval.d 𝐷 = ( 𝐼 mDeg 𝑅 )
mdegval.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mdegval.b 𝐵 = ( Base ‘ 𝑃 )
mdegval.z 0 = ( 0g𝑅 )
mdegval.a 𝐴 = { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin }
mdegval.h 𝐻 = ( 𝐴 ↦ ( ℂfld Σg ) )
Assertion mdegval ( 𝐹𝐵 → ( 𝐷𝐹 ) = sup ( ( 𝐻 “ ( 𝐹 supp 0 ) ) , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 mdegval.d 𝐷 = ( 𝐼 mDeg 𝑅 )
2 mdegval.p 𝑃 = ( 𝐼 mPoly 𝑅 )
3 mdegval.b 𝐵 = ( Base ‘ 𝑃 )
4 mdegval.z 0 = ( 0g𝑅 )
5 mdegval.a 𝐴 = { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin }
6 mdegval.h 𝐻 = ( 𝐴 ↦ ( ℂfld Σg ) )
7 oveq1 ( 𝑓 = 𝐹 → ( 𝑓 supp 0 ) = ( 𝐹 supp 0 ) )
8 7 imaeq2d ( 𝑓 = 𝐹 → ( 𝐻 “ ( 𝑓 supp 0 ) ) = ( 𝐻 “ ( 𝐹 supp 0 ) ) )
9 8 supeq1d ( 𝑓 = 𝐹 → sup ( ( 𝐻 “ ( 𝑓 supp 0 ) ) , ℝ* , < ) = sup ( ( 𝐻 “ ( 𝐹 supp 0 ) ) , ℝ* , < ) )
10 1 2 3 4 5 6 mdegfval 𝐷 = ( 𝑓𝐵 ↦ sup ( ( 𝐻 “ ( 𝑓 supp 0 ) ) , ℝ* , < ) )
11 xrltso < Or ℝ*
12 11 supex sup ( ( 𝐻 “ ( 𝐹 supp 0 ) ) , ℝ* , < ) ∈ V
13 9 10 12 fvmpt ( 𝐹𝐵 → ( 𝐷𝐹 ) = sup ( ( 𝐻 “ ( 𝐹 supp 0 ) ) , ℝ* , < ) )