Step |
Hyp |
Ref |
Expression |
1 |
|
mdegval.d |
⊢ 𝐷 = ( 𝐼 mDeg 𝑅 ) |
2 |
|
mdegval.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
3 |
|
mdegval.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
mdegval.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
mdegval.a |
⊢ 𝐴 = { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } |
6 |
|
mdegval.h |
⊢ 𝐻 = ( ℎ ∈ 𝐴 ↦ ( ℂfld Σg ℎ ) ) |
7 |
|
oveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 supp 0 ) = ( 𝐹 supp 0 ) ) |
8 |
7
|
imaeq2d |
⊢ ( 𝑓 = 𝐹 → ( 𝐻 “ ( 𝑓 supp 0 ) ) = ( 𝐻 “ ( 𝐹 supp 0 ) ) ) |
9 |
8
|
supeq1d |
⊢ ( 𝑓 = 𝐹 → sup ( ( 𝐻 “ ( 𝑓 supp 0 ) ) , ℝ* , < ) = sup ( ( 𝐻 “ ( 𝐹 supp 0 ) ) , ℝ* , < ) ) |
10 |
1 2 3 4 5 6
|
mdegfval |
⊢ 𝐷 = ( 𝑓 ∈ 𝐵 ↦ sup ( ( 𝐻 “ ( 𝑓 supp 0 ) ) , ℝ* , < ) ) |
11 |
|
xrltso |
⊢ < Or ℝ* |
12 |
11
|
supex |
⊢ sup ( ( 𝐻 “ ( 𝐹 supp 0 ) ) , ℝ* , < ) ∈ V |
13 |
9 10 12
|
fvmpt |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐷 ‘ 𝐹 ) = sup ( ( 𝐻 “ ( 𝐹 supp 0 ) ) , ℝ* , < ) ) |