Metamath Proof Explorer


Theorem mdegval

Description: Value of the multivariate degree function at some particular polynomial. (Contributed by Stefan O'Rear, 19-Mar-2015) (Revised by AV, 25-Jun-2019)

Ref Expression
Hypotheses mdegval.d D=ImDegR
mdegval.p P=ImPolyR
mdegval.b B=BaseP
mdegval.z 0˙=0R
mdegval.a A=m0I|m-1Fin
mdegval.h H=hAfldh
Assertion mdegval FBDF=supHFsupp0˙*<

Proof

Step Hyp Ref Expression
1 mdegval.d D=ImDegR
2 mdegval.p P=ImPolyR
3 mdegval.b B=BaseP
4 mdegval.z 0˙=0R
5 mdegval.a A=m0I|m-1Fin
6 mdegval.h H=hAfldh
7 oveq1 f=Ffsupp0˙=Fsupp0˙
8 7 imaeq2d f=FHfsupp0˙=HFsupp0˙
9 8 supeq1d f=FsupHfsupp0˙*<=supHFsupp0˙*<
10 1 2 3 4 5 6 mdegfval D=fBsupHfsupp0˙*<
11 xrltso <Or*
12 11 supex supHFsupp0˙*<V
13 9 10 12 fvmpt FBDF=supHFsupp0˙*<