| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdegval.d |
|- D = ( I mDeg R ) |
| 2 |
|
mdegval.p |
|- P = ( I mPoly R ) |
| 3 |
|
mdegval.b |
|- B = ( Base ` P ) |
| 4 |
|
mdegval.z |
|- .0. = ( 0g ` R ) |
| 5 |
|
mdegval.a |
|- A = { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |
| 6 |
|
mdegval.h |
|- H = ( h e. A |-> ( CCfld gsum h ) ) |
| 7 |
|
oveq1 |
|- ( f = F -> ( f supp .0. ) = ( F supp .0. ) ) |
| 8 |
7
|
imaeq2d |
|- ( f = F -> ( H " ( f supp .0. ) ) = ( H " ( F supp .0. ) ) ) |
| 9 |
8
|
supeq1d |
|- ( f = F -> sup ( ( H " ( f supp .0. ) ) , RR* , < ) = sup ( ( H " ( F supp .0. ) ) , RR* , < ) ) |
| 10 |
1 2 3 4 5 6
|
mdegfval |
|- D = ( f e. B |-> sup ( ( H " ( f supp .0. ) ) , RR* , < ) ) |
| 11 |
|
xrltso |
|- < Or RR* |
| 12 |
11
|
supex |
|- sup ( ( H " ( F supp .0. ) ) , RR* , < ) e. _V |
| 13 |
9 10 12
|
fvmpt |
|- ( F e. B -> ( D ` F ) = sup ( ( H " ( F supp .0. ) ) , RR* , < ) ) |