Metamath Proof Explorer


Theorem mdegleb

Description: Property of being of limited degree. (Contributed by Stefan O'Rear, 19-Mar-2015)

Ref Expression
Hypotheses mdegval.d D = I mDeg R
mdegval.p P = I mPoly R
mdegval.b B = Base P
mdegval.z 0 ˙ = 0 R
mdegval.a A = m 0 I | m -1 Fin
mdegval.h H = h A fld h
Assertion mdegleb F B G * D F G x A G < H x F x = 0 ˙

Proof

Step Hyp Ref Expression
1 mdegval.d D = I mDeg R
2 mdegval.p P = I mPoly R
3 mdegval.b B = Base P
4 mdegval.z 0 ˙ = 0 R
5 mdegval.a A = m 0 I | m -1 Fin
6 mdegval.h H = h A fld h
7 1 2 3 4 5 6 mdegval F B D F = sup H F supp 0 ˙ * <
8 7 adantr F B G * D F = sup H F supp 0 ˙ * <
9 8 breq1d F B G * D F G sup H F supp 0 ˙ * < G
10 imassrn H F supp 0 ˙ ran H
11 2 3 mplrcl F B I V
12 11 adantr F B G * I V
13 5 6 tdeglem1 I V H : A 0
14 12 13 syl F B G * H : A 0
15 14 frnd F B G * ran H 0
16 nn0ssre 0
17 ressxr *
18 16 17 sstri 0 *
19 15 18 sstrdi F B G * ran H *
20 10 19 sstrid F B G * H F supp 0 ˙ *
21 supxrleub H F supp 0 ˙ * G * sup H F supp 0 ˙ * < G y H F supp 0 ˙ y G
22 20 21 sylancom F B G * sup H F supp 0 ˙ * < G y H F supp 0 ˙ y G
23 14 ffnd F B G * H Fn A
24 suppssdm F supp 0 ˙ dom F
25 eqid Base R = Base R
26 simpl F B G * F B
27 2 25 3 5 26 mplelf F B G * F : A Base R
28 24 27 fssdm F B G * F supp 0 ˙ A
29 breq1 y = H x y G H x G
30 29 ralima H Fn A F supp 0 ˙ A y H F supp 0 ˙ y G x supp 0 ˙ F H x G
31 23 28 30 syl2anc F B G * y H F supp 0 ˙ y G x supp 0 ˙ F H x G
32 27 ffnd F B G * F Fn A
33 ovex 0 I V
34 33 rabex m 0 I | m -1 Fin V
35 34 a1i F B G * m 0 I | m -1 Fin V
36 5 35 eqeltrid F B G * A V
37 4 fvexi 0 ˙ V
38 37 a1i F B G * 0 ˙ V
39 elsuppfn F Fn A A V 0 ˙ V x supp 0 ˙ F x A F x 0 ˙
40 fvex F x V
41 40 biantrur F x 0 ˙ F x V F x 0 ˙
42 eldifsn F x V 0 ˙ F x V F x 0 ˙
43 41 42 bitr4i F x 0 ˙ F x V 0 ˙
44 43 a1i F Fn A A V 0 ˙ V F x 0 ˙ F x V 0 ˙
45 44 anbi2d F Fn A A V 0 ˙ V x A F x 0 ˙ x A F x V 0 ˙
46 39 45 bitrd F Fn A A V 0 ˙ V x supp 0 ˙ F x A F x V 0 ˙
47 32 36 38 46 syl3anc F B G * x supp 0 ˙ F x A F x V 0 ˙
48 47 imbi1d F B G * x supp 0 ˙ F H x G x A F x V 0 ˙ H x G
49 impexp x A F x V 0 ˙ H x G x A F x V 0 ˙ H x G
50 con34b F x V 0 ˙ H x G ¬ H x G ¬ F x V 0 ˙
51 simplr F B G * x A G *
52 14 ffvelrnda F B G * x A H x 0
53 18 52 sseldi F B G * x A H x *
54 xrltnle G * H x * G < H x ¬ H x G
55 51 53 54 syl2anc F B G * x A G < H x ¬ H x G
56 55 bicomd F B G * x A ¬ H x G G < H x
57 ianor ¬ F x V F x 0 ˙ ¬ F x V ¬ F x 0 ˙
58 57 42 xchnxbir ¬ F x V 0 ˙ ¬ F x V ¬ F x 0 ˙
59 orcom ¬ F x V ¬ F x 0 ˙ ¬ F x 0 ˙ ¬ F x V
60 40 notnoti ¬ ¬ F x V
61 60 biorfi ¬ F x 0 ˙ ¬ F x 0 ˙ ¬ F x V
62 nne ¬ F x 0 ˙ F x = 0 ˙
63 59 61 62 3bitr2i ¬ F x V ¬ F x 0 ˙ F x = 0 ˙
64 63 a1i F B G * x A ¬ F x V ¬ F x 0 ˙ F x = 0 ˙
65 58 64 syl5bb F B G * x A ¬ F x V 0 ˙ F x = 0 ˙
66 56 65 imbi12d F B G * x A ¬ H x G ¬ F x V 0 ˙ G < H x F x = 0 ˙
67 50 66 syl5bb F B G * x A F x V 0 ˙ H x G G < H x F x = 0 ˙
68 67 pm5.74da F B G * x A F x V 0 ˙ H x G x A G < H x F x = 0 ˙
69 49 68 syl5bb F B G * x A F x V 0 ˙ H x G x A G < H x F x = 0 ˙
70 48 69 bitrd F B G * x supp 0 ˙ F H x G x A G < H x F x = 0 ˙
71 70 ralbidv2 F B G * x supp 0 ˙ F H x G x A G < H x F x = 0 ˙
72 31 71 bitrd F B G * y H F supp 0 ˙ y G x A G < H x F x = 0 ˙
73 9 22 72 3bitrd F B G * D F G x A G < H x F x = 0 ˙