Metamath Proof Explorer


Theorem mdeglt

Description: If there is an upper limit on the degree of a polynomial that is lower than the degree of some exponent bag, then that exponent bag is unrepresented in the polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015) (Proof shortened by AV, 27-Jul-2019)

Ref Expression
Hypotheses mdegval.d D=ImDegR
mdegval.p P=ImPolyR
mdegval.b B=BaseP
mdegval.z 0˙=0R
mdegval.a A=m0I|m-1Fin
mdegval.h H=hAfldh
mdeglt.f φFB
medglt.x φXA
mdeglt.lt φDF<HX
Assertion mdeglt φFX=0˙

Proof

Step Hyp Ref Expression
1 mdegval.d D=ImDegR
2 mdegval.p P=ImPolyR
3 mdegval.b B=BaseP
4 mdegval.z 0˙=0R
5 mdegval.a A=m0I|m-1Fin
6 mdegval.h H=hAfldh
7 mdeglt.f φFB
8 medglt.x φXA
9 mdeglt.lt φDF<HX
10 fveq2 x=XHx=HX
11 10 breq2d x=XDF<HxDF<HX
12 fveqeq2 x=XFx=0˙FX=0˙
13 11 12 imbi12d x=XDF<HxFx=0˙DF<HXFX=0˙
14 1 2 3 4 5 6 mdegval FBDF=supHFsupp0˙*<
15 7 14 syl φDF=supHFsupp0˙*<
16 imassrn HFsupp0˙ranH
17 5 6 tdeglem1 H:A0
18 frn H:A0ranH0
19 17 18 mp1i φranH0
20 nn0ssre 0
21 ressxr *
22 20 21 sstri 0*
23 19 22 sstrdi φranH*
24 16 23 sstrid φHFsupp0˙*
25 supxrcl HFsupp0˙*supHFsupp0˙*<*
26 24 25 syl φsupHFsupp0˙*<*
27 15 26 eqeltrd φDF*
28 27 xrleidd φDFDF
29 1 2 3 4 5 6 mdegleb FBDF*DFDFxADF<HxFx=0˙
30 7 27 29 syl2anc φDFDFxADF<HxFx=0˙
31 28 30 mpbid φxADF<HxFx=0˙
32 13 31 8 rspcdva φDF<HXFX=0˙
33 9 32 mpd φFX=0˙