| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdegval.d |  |-  D = ( I mDeg R ) | 
						
							| 2 |  | mdegval.p |  |-  P = ( I mPoly R ) | 
						
							| 3 |  | mdegval.b |  |-  B = ( Base ` P ) | 
						
							| 4 |  | mdegval.z |  |-  .0. = ( 0g ` R ) | 
						
							| 5 |  | mdegval.a |  |-  A = { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } | 
						
							| 6 |  | mdegval.h |  |-  H = ( h e. A |-> ( CCfld gsum h ) ) | 
						
							| 7 |  | mdeglt.f |  |-  ( ph -> F e. B ) | 
						
							| 8 |  | medglt.x |  |-  ( ph -> X e. A ) | 
						
							| 9 |  | mdeglt.lt |  |-  ( ph -> ( D ` F ) < ( H ` X ) ) | 
						
							| 10 |  | fveq2 |  |-  ( x = X -> ( H ` x ) = ( H ` X ) ) | 
						
							| 11 | 10 | breq2d |  |-  ( x = X -> ( ( D ` F ) < ( H ` x ) <-> ( D ` F ) < ( H ` X ) ) ) | 
						
							| 12 |  | fveqeq2 |  |-  ( x = X -> ( ( F ` x ) = .0. <-> ( F ` X ) = .0. ) ) | 
						
							| 13 | 11 12 | imbi12d |  |-  ( x = X -> ( ( ( D ` F ) < ( H ` x ) -> ( F ` x ) = .0. ) <-> ( ( D ` F ) < ( H ` X ) -> ( F ` X ) = .0. ) ) ) | 
						
							| 14 | 1 2 3 4 5 6 | mdegval |  |-  ( F e. B -> ( D ` F ) = sup ( ( H " ( F supp .0. ) ) , RR* , < ) ) | 
						
							| 15 | 7 14 | syl |  |-  ( ph -> ( D ` F ) = sup ( ( H " ( F supp .0. ) ) , RR* , < ) ) | 
						
							| 16 |  | imassrn |  |-  ( H " ( F supp .0. ) ) C_ ran H | 
						
							| 17 | 5 6 | tdeglem1 |  |-  H : A --> NN0 | 
						
							| 18 |  | frn |  |-  ( H : A --> NN0 -> ran H C_ NN0 ) | 
						
							| 19 | 17 18 | mp1i |  |-  ( ph -> ran H C_ NN0 ) | 
						
							| 20 |  | nn0ssre |  |-  NN0 C_ RR | 
						
							| 21 |  | ressxr |  |-  RR C_ RR* | 
						
							| 22 | 20 21 | sstri |  |-  NN0 C_ RR* | 
						
							| 23 | 19 22 | sstrdi |  |-  ( ph -> ran H C_ RR* ) | 
						
							| 24 | 16 23 | sstrid |  |-  ( ph -> ( H " ( F supp .0. ) ) C_ RR* ) | 
						
							| 25 |  | supxrcl |  |-  ( ( H " ( F supp .0. ) ) C_ RR* -> sup ( ( H " ( F supp .0. ) ) , RR* , < ) e. RR* ) | 
						
							| 26 | 24 25 | syl |  |-  ( ph -> sup ( ( H " ( F supp .0. ) ) , RR* , < ) e. RR* ) | 
						
							| 27 | 15 26 | eqeltrd |  |-  ( ph -> ( D ` F ) e. RR* ) | 
						
							| 28 | 27 | xrleidd |  |-  ( ph -> ( D ` F ) <_ ( D ` F ) ) | 
						
							| 29 | 1 2 3 4 5 6 | mdegleb |  |-  ( ( F e. B /\ ( D ` F ) e. RR* ) -> ( ( D ` F ) <_ ( D ` F ) <-> A. x e. A ( ( D ` F ) < ( H ` x ) -> ( F ` x ) = .0. ) ) ) | 
						
							| 30 | 7 27 29 | syl2anc |  |-  ( ph -> ( ( D ` F ) <_ ( D ` F ) <-> A. x e. A ( ( D ` F ) < ( H ` x ) -> ( F ` x ) = .0. ) ) ) | 
						
							| 31 | 28 30 | mpbid |  |-  ( ph -> A. x e. A ( ( D ` F ) < ( H ` x ) -> ( F ` x ) = .0. ) ) | 
						
							| 32 | 13 31 8 | rspcdva |  |-  ( ph -> ( ( D ` F ) < ( H ` X ) -> ( F ` X ) = .0. ) ) | 
						
							| 33 | 9 32 | mpd |  |-  ( ph -> ( F ` X ) = .0. ) |