| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdegval.d |
|- D = ( I mDeg R ) |
| 2 |
|
mdegval.p |
|- P = ( I mPoly R ) |
| 3 |
|
mdegval.b |
|- B = ( Base ` P ) |
| 4 |
|
mdegval.z |
|- .0. = ( 0g ` R ) |
| 5 |
|
mdegval.a |
|- A = { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |
| 6 |
|
mdegval.h |
|- H = ( h e. A |-> ( CCfld gsum h ) ) |
| 7 |
|
mdegldg.y |
|- Y = ( 0g ` P ) |
| 8 |
1 2 3 4 5 6
|
mdegval |
|- ( F e. B -> ( D ` F ) = sup ( ( H " ( F supp .0. ) ) , RR* , < ) ) |
| 9 |
8
|
3ad2ant2 |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( D ` F ) = sup ( ( H " ( F supp .0. ) ) , RR* , < ) ) |
| 10 |
5 6
|
tdeglem1 |
|- H : A --> NN0 |
| 11 |
10
|
a1i |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> H : A --> NN0 ) |
| 12 |
11
|
ffund |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> Fun H ) |
| 13 |
|
simp2 |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> F e. B ) |
| 14 |
2 3 4 13
|
mplelsfi |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> F finSupp .0. ) |
| 15 |
14
|
fsuppimpd |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( F supp .0. ) e. Fin ) |
| 16 |
|
imafi |
|- ( ( Fun H /\ ( F supp .0. ) e. Fin ) -> ( H " ( F supp .0. ) ) e. Fin ) |
| 17 |
12 15 16
|
syl2anc |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( H " ( F supp .0. ) ) e. Fin ) |
| 18 |
|
simp3 |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> F =/= Y ) |
| 19 |
2 3
|
mplrcl |
|- ( F e. B -> I e. _V ) |
| 20 |
19
|
3ad2ant2 |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> I e. _V ) |
| 21 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 22 |
21
|
3ad2ant1 |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> R e. Grp ) |
| 23 |
2 5 4 7 20 22
|
mpl0 |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> Y = ( A X. { .0. } ) ) |
| 24 |
18 23
|
neeqtrd |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> F =/= ( A X. { .0. } ) ) |
| 25 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 26 |
2 25 3 5 13
|
mplelf |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> F : A --> ( Base ` R ) ) |
| 27 |
26
|
ffnd |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> F Fn A ) |
| 28 |
4
|
fvexi |
|- .0. e. _V |
| 29 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
| 30 |
5 29
|
rabex2 |
|- A e. _V |
| 31 |
|
fnsuppeq0 |
|- ( ( F Fn A /\ A e. _V /\ .0. e. _V ) -> ( ( F supp .0. ) = (/) <-> F = ( A X. { .0. } ) ) ) |
| 32 |
30 31
|
mp3an2 |
|- ( ( F Fn A /\ .0. e. _V ) -> ( ( F supp .0. ) = (/) <-> F = ( A X. { .0. } ) ) ) |
| 33 |
27 28 32
|
sylancl |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( ( F supp .0. ) = (/) <-> F = ( A X. { .0. } ) ) ) |
| 34 |
33
|
necon3bid |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( ( F supp .0. ) =/= (/) <-> F =/= ( A X. { .0. } ) ) ) |
| 35 |
24 34
|
mpbird |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( F supp .0. ) =/= (/) ) |
| 36 |
11
|
ffnd |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> H Fn A ) |
| 37 |
|
suppssdm |
|- ( F supp .0. ) C_ dom F |
| 38 |
37 26
|
fssdm |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( F supp .0. ) C_ A ) |
| 39 |
|
fnimaeq0 |
|- ( ( H Fn A /\ ( F supp .0. ) C_ A ) -> ( ( H " ( F supp .0. ) ) = (/) <-> ( F supp .0. ) = (/) ) ) |
| 40 |
36 38 39
|
syl2anc |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( ( H " ( F supp .0. ) ) = (/) <-> ( F supp .0. ) = (/) ) ) |
| 41 |
40
|
necon3bid |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( ( H " ( F supp .0. ) ) =/= (/) <-> ( F supp .0. ) =/= (/) ) ) |
| 42 |
35 41
|
mpbird |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( H " ( F supp .0. ) ) =/= (/) ) |
| 43 |
|
imassrn |
|- ( H " ( F supp .0. ) ) C_ ran H |
| 44 |
11
|
frnd |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ran H C_ NN0 ) |
| 45 |
43 44
|
sstrid |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( H " ( F supp .0. ) ) C_ NN0 ) |
| 46 |
|
nn0ssre |
|- NN0 C_ RR |
| 47 |
|
ressxr |
|- RR C_ RR* |
| 48 |
46 47
|
sstri |
|- NN0 C_ RR* |
| 49 |
45 48
|
sstrdi |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( H " ( F supp .0. ) ) C_ RR* ) |
| 50 |
|
xrltso |
|- < Or RR* |
| 51 |
|
fisupcl |
|- ( ( < Or RR* /\ ( ( H " ( F supp .0. ) ) e. Fin /\ ( H " ( F supp .0. ) ) =/= (/) /\ ( H " ( F supp .0. ) ) C_ RR* ) ) -> sup ( ( H " ( F supp .0. ) ) , RR* , < ) e. ( H " ( F supp .0. ) ) ) |
| 52 |
50 51
|
mpan |
|- ( ( ( H " ( F supp .0. ) ) e. Fin /\ ( H " ( F supp .0. ) ) =/= (/) /\ ( H " ( F supp .0. ) ) C_ RR* ) -> sup ( ( H " ( F supp .0. ) ) , RR* , < ) e. ( H " ( F supp .0. ) ) ) |
| 53 |
17 42 49 52
|
syl3anc |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> sup ( ( H " ( F supp .0. ) ) , RR* , < ) e. ( H " ( F supp .0. ) ) ) |
| 54 |
9 53
|
eqeltrd |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( D ` F ) e. ( H " ( F supp .0. ) ) ) |
| 55 |
36 38
|
fvelimabd |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( ( D ` F ) e. ( H " ( F supp .0. ) ) <-> E. x e. ( F supp .0. ) ( H ` x ) = ( D ` F ) ) ) |
| 56 |
|
rexsupp |
|- ( ( F Fn A /\ A e. _V /\ .0. e. _V ) -> ( E. x e. ( F supp .0. ) ( H ` x ) = ( D ` F ) <-> E. x e. A ( ( F ` x ) =/= .0. /\ ( H ` x ) = ( D ` F ) ) ) ) |
| 57 |
30 28 56
|
mp3an23 |
|- ( F Fn A -> ( E. x e. ( F supp .0. ) ( H ` x ) = ( D ` F ) <-> E. x e. A ( ( F ` x ) =/= .0. /\ ( H ` x ) = ( D ` F ) ) ) ) |
| 58 |
27 57
|
syl |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( E. x e. ( F supp .0. ) ( H ` x ) = ( D ` F ) <-> E. x e. A ( ( F ` x ) =/= .0. /\ ( H ` x ) = ( D ` F ) ) ) ) |
| 59 |
55 58
|
bitrd |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( ( D ` F ) e. ( H " ( F supp .0. ) ) <-> E. x e. A ( ( F ` x ) =/= .0. /\ ( H ` x ) = ( D ` F ) ) ) ) |
| 60 |
54 59
|
mpbid |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> E. x e. A ( ( F ` x ) =/= .0. /\ ( H ` x ) = ( D ` F ) ) ) |