Step |
Hyp |
Ref |
Expression |
1 |
|
mdegval.d |
|- D = ( I mDeg R ) |
2 |
|
mdegval.p |
|- P = ( I mPoly R ) |
3 |
|
mdegval.b |
|- B = ( Base ` P ) |
4 |
|
mdegval.z |
|- .0. = ( 0g ` R ) |
5 |
|
mdegval.a |
|- A = { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |
6 |
|
mdegval.h |
|- H = ( h e. A |-> ( CCfld gsum h ) ) |
7 |
|
mdegldg.y |
|- Y = ( 0g ` P ) |
8 |
1 2 3 4 5 6
|
mdegval |
|- ( F e. B -> ( D ` F ) = sup ( ( H " ( F supp .0. ) ) , RR* , < ) ) |
9 |
8
|
3ad2ant2 |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( D ` F ) = sup ( ( H " ( F supp .0. ) ) , RR* , < ) ) |
10 |
5 6
|
tdeglem1 |
|- H : A --> NN0 |
11 |
10
|
a1i |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> H : A --> NN0 ) |
12 |
11
|
ffund |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> Fun H ) |
13 |
|
simp2 |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> F e. B ) |
14 |
|
simp1 |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> R e. Ring ) |
15 |
2 3 4 13 14
|
mplelsfi |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> F finSupp .0. ) |
16 |
15
|
fsuppimpd |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( F supp .0. ) e. Fin ) |
17 |
|
imafi |
|- ( ( Fun H /\ ( F supp .0. ) e. Fin ) -> ( H " ( F supp .0. ) ) e. Fin ) |
18 |
12 16 17
|
syl2anc |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( H " ( F supp .0. ) ) e. Fin ) |
19 |
|
simp3 |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> F =/= Y ) |
20 |
2 3
|
mplrcl |
|- ( F e. B -> I e. _V ) |
21 |
20
|
3ad2ant2 |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> I e. _V ) |
22 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
23 |
22
|
3ad2ant1 |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> R e. Grp ) |
24 |
2 5 4 7 21 23
|
mpl0 |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> Y = ( A X. { .0. } ) ) |
25 |
19 24
|
neeqtrd |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> F =/= ( A X. { .0. } ) ) |
26 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
27 |
2 26 3 5 13
|
mplelf |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> F : A --> ( Base ` R ) ) |
28 |
27
|
ffnd |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> F Fn A ) |
29 |
4
|
fvexi |
|- .0. e. _V |
30 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
31 |
5 30
|
rabex2 |
|- A e. _V |
32 |
|
fnsuppeq0 |
|- ( ( F Fn A /\ A e. _V /\ .0. e. _V ) -> ( ( F supp .0. ) = (/) <-> F = ( A X. { .0. } ) ) ) |
33 |
31 32
|
mp3an2 |
|- ( ( F Fn A /\ .0. e. _V ) -> ( ( F supp .0. ) = (/) <-> F = ( A X. { .0. } ) ) ) |
34 |
28 29 33
|
sylancl |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( ( F supp .0. ) = (/) <-> F = ( A X. { .0. } ) ) ) |
35 |
34
|
necon3bid |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( ( F supp .0. ) =/= (/) <-> F =/= ( A X. { .0. } ) ) ) |
36 |
25 35
|
mpbird |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( F supp .0. ) =/= (/) ) |
37 |
11
|
ffnd |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> H Fn A ) |
38 |
|
suppssdm |
|- ( F supp .0. ) C_ dom F |
39 |
38 27
|
fssdm |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( F supp .0. ) C_ A ) |
40 |
|
fnimaeq0 |
|- ( ( H Fn A /\ ( F supp .0. ) C_ A ) -> ( ( H " ( F supp .0. ) ) = (/) <-> ( F supp .0. ) = (/) ) ) |
41 |
37 39 40
|
syl2anc |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( ( H " ( F supp .0. ) ) = (/) <-> ( F supp .0. ) = (/) ) ) |
42 |
41
|
necon3bid |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( ( H " ( F supp .0. ) ) =/= (/) <-> ( F supp .0. ) =/= (/) ) ) |
43 |
36 42
|
mpbird |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( H " ( F supp .0. ) ) =/= (/) ) |
44 |
|
imassrn |
|- ( H " ( F supp .0. ) ) C_ ran H |
45 |
11
|
frnd |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ran H C_ NN0 ) |
46 |
44 45
|
sstrid |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( H " ( F supp .0. ) ) C_ NN0 ) |
47 |
|
nn0ssre |
|- NN0 C_ RR |
48 |
|
ressxr |
|- RR C_ RR* |
49 |
47 48
|
sstri |
|- NN0 C_ RR* |
50 |
46 49
|
sstrdi |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( H " ( F supp .0. ) ) C_ RR* ) |
51 |
|
xrltso |
|- < Or RR* |
52 |
|
fisupcl |
|- ( ( < Or RR* /\ ( ( H " ( F supp .0. ) ) e. Fin /\ ( H " ( F supp .0. ) ) =/= (/) /\ ( H " ( F supp .0. ) ) C_ RR* ) ) -> sup ( ( H " ( F supp .0. ) ) , RR* , < ) e. ( H " ( F supp .0. ) ) ) |
53 |
51 52
|
mpan |
|- ( ( ( H " ( F supp .0. ) ) e. Fin /\ ( H " ( F supp .0. ) ) =/= (/) /\ ( H " ( F supp .0. ) ) C_ RR* ) -> sup ( ( H " ( F supp .0. ) ) , RR* , < ) e. ( H " ( F supp .0. ) ) ) |
54 |
18 43 50 53
|
syl3anc |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> sup ( ( H " ( F supp .0. ) ) , RR* , < ) e. ( H " ( F supp .0. ) ) ) |
55 |
9 54
|
eqeltrd |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( D ` F ) e. ( H " ( F supp .0. ) ) ) |
56 |
37 39
|
fvelimabd |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( ( D ` F ) e. ( H " ( F supp .0. ) ) <-> E. x e. ( F supp .0. ) ( H ` x ) = ( D ` F ) ) ) |
57 |
|
rexsupp |
|- ( ( F Fn A /\ A e. _V /\ .0. e. _V ) -> ( E. x e. ( F supp .0. ) ( H ` x ) = ( D ` F ) <-> E. x e. A ( ( F ` x ) =/= .0. /\ ( H ` x ) = ( D ` F ) ) ) ) |
58 |
31 29 57
|
mp3an23 |
|- ( F Fn A -> ( E. x e. ( F supp .0. ) ( H ` x ) = ( D ` F ) <-> E. x e. A ( ( F ` x ) =/= .0. /\ ( H ` x ) = ( D ` F ) ) ) ) |
59 |
28 58
|
syl |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( E. x e. ( F supp .0. ) ( H ` x ) = ( D ` F ) <-> E. x e. A ( ( F ` x ) =/= .0. /\ ( H ` x ) = ( D ` F ) ) ) ) |
60 |
56 59
|
bitrd |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> ( ( D ` F ) e. ( H " ( F supp .0. ) ) <-> E. x e. A ( ( F ` x ) =/= .0. /\ ( H ` x ) = ( D ` F ) ) ) ) |
61 |
55 60
|
mpbid |
|- ( ( R e. Ring /\ F e. B /\ F =/= Y ) -> E. x e. A ( ( F ` x ) =/= .0. /\ ( H ` x ) = ( D ` F ) ) ) |