Step |
Hyp |
Ref |
Expression |
1 |
|
ss0b |
|- ( ( F supp Z ) C_ (/) <-> ( F supp Z ) = (/) ) |
2 |
|
un0 |
|- ( A u. (/) ) = A |
3 |
|
uncom |
|- ( A u. (/) ) = ( (/) u. A ) |
4 |
2 3
|
eqtr3i |
|- A = ( (/) u. A ) |
5 |
4
|
fneq2i |
|- ( F Fn A <-> F Fn ( (/) u. A ) ) |
6 |
5
|
biimpi |
|- ( F Fn A -> F Fn ( (/) u. A ) ) |
7 |
6
|
3ad2ant1 |
|- ( ( F Fn A /\ A e. W /\ Z e. V ) -> F Fn ( (/) u. A ) ) |
8 |
|
fnex |
|- ( ( F Fn A /\ A e. W ) -> F e. _V ) |
9 |
8
|
3adant3 |
|- ( ( F Fn A /\ A e. W /\ Z e. V ) -> F e. _V ) |
10 |
|
simp3 |
|- ( ( F Fn A /\ A e. W /\ Z e. V ) -> Z e. V ) |
11 |
|
0in |
|- ( (/) i^i A ) = (/) |
12 |
11
|
a1i |
|- ( ( F Fn A /\ A e. W /\ Z e. V ) -> ( (/) i^i A ) = (/) ) |
13 |
|
fnsuppres |
|- ( ( F Fn ( (/) u. A ) /\ ( F e. _V /\ Z e. V ) /\ ( (/) i^i A ) = (/) ) -> ( ( F supp Z ) C_ (/) <-> ( F |` A ) = ( A X. { Z } ) ) ) |
14 |
7 9 10 12 13
|
syl121anc |
|- ( ( F Fn A /\ A e. W /\ Z e. V ) -> ( ( F supp Z ) C_ (/) <-> ( F |` A ) = ( A X. { Z } ) ) ) |
15 |
1 14
|
bitr3id |
|- ( ( F Fn A /\ A e. W /\ Z e. V ) -> ( ( F supp Z ) = (/) <-> ( F |` A ) = ( A X. { Z } ) ) ) |
16 |
|
fnresdm |
|- ( F Fn A -> ( F |` A ) = F ) |
17 |
16
|
3ad2ant1 |
|- ( ( F Fn A /\ A e. W /\ Z e. V ) -> ( F |` A ) = F ) |
18 |
17
|
eqeq1d |
|- ( ( F Fn A /\ A e. W /\ Z e. V ) -> ( ( F |` A ) = ( A X. { Z } ) <-> F = ( A X. { Z } ) ) ) |
19 |
15 18
|
bitrd |
|- ( ( F Fn A /\ A e. W /\ Z e. V ) -> ( ( F supp Z ) = (/) <-> F = ( A X. { Z } ) ) ) |