Metamath Proof Explorer


Theorem fnsuppeq0

Description: The support of a function is empty iff it is identically zero. (Contributed by Stefan O'Rear, 22-Mar-2015) (Revised by AV, 28-May-2019)

Ref Expression
Assertion fnsuppeq0 FFnAAWZVFsuppZ=F=A×Z

Proof

Step Hyp Ref Expression
1 ss0b FsuppZFsuppZ=
2 un0 A=A
3 uncom A=A
4 2 3 eqtr3i A=A
5 4 fneq2i FFnAFFnA
6 5 biimpi FFnAFFnA
7 6 3ad2ant1 FFnAAWZVFFnA
8 fnex FFnAAWFV
9 8 3adant3 FFnAAWZVFV
10 simp3 FFnAAWZVZV
11 0in A=
12 11 a1i FFnAAWZVA=
13 fnsuppres FFnAFVZVA=FsuppZFA=A×Z
14 7 9 10 12 13 syl121anc FFnAAWZVFsuppZFA=A×Z
15 1 14 bitr3id FFnAAWZVFsuppZ=FA=A×Z
16 fnresdm FFnAFA=F
17 16 3ad2ant1 FFnAAWZVFA=F
18 17 eqeq1d FFnAAWZVFA=A×ZF=A×Z
19 15 18 bitrd FFnAAWZVFsuppZ=F=A×Z