Metamath Proof Explorer


Theorem fczsupp0

Description: The support of a constant function with value zero is empty. (Contributed by AV, 30-Jun-2019)

Ref Expression
Assertion fczsupp0 B×ZsuppZ=

Proof

Step Hyp Ref Expression
1 eqidd B×ZVZVB×Z=B×Z
2 fnconstg ZVB×ZFnB
3 2 adantl B×ZVZVB×ZFnB
4 snnzg ZVZ
5 simpl B×ZVZVB×ZV
6 xpexcnv ZB×ZVBV
7 4 5 6 syl2an2 B×ZVZVBV
8 simpr B×ZVZVZV
9 fnsuppeq0 B×ZFnBBVZVB×ZsuppZ=B×Z=B×Z
10 3 7 8 9 syl3anc B×ZVZVB×ZsuppZ=B×Z=B×Z
11 1 10 mpbird B×ZVZVB×ZsuppZ=
12 supp0prc ¬B×ZVZVB×ZsuppZ=
13 11 12 pm2.61i B×ZsuppZ=