Metamath Proof Explorer


Theorem fnsuppres

Description: Two ways to express restriction of a support set. (Contributed by Stefan O'Rear, 5-Feb-2015) (Revised by AV, 28-May-2019)

Ref Expression
Assertion fnsuppres F Fn A B F W Z V A B = F supp Z A F B = B × Z

Proof

Step Hyp Ref Expression
1 fndm F Fn A B dom F = A B
2 1 rabeqdv F Fn A B a dom F | F a Z = a A B | F a Z
3 2 3ad2ant1 F Fn A B F W Z V A B = a dom F | F a Z = a A B | F a Z
4 3 sseq1d F Fn A B F W Z V A B = a dom F | F a Z A a A B | F a Z A
5 unss a A | F a Z A a B | F a Z A a A | F a Z a B | F a Z A
6 ssrab2 a A | F a Z A
7 6 biantrur a B | F a Z A a A | F a Z A a B | F a Z A
8 rabun2 a A B | F a Z = a A | F a Z a B | F a Z
9 8 sseq1i a A B | F a Z A a A | F a Z a B | F a Z A
10 5 7 9 3bitr4ri a A B | F a Z A a B | F a Z A
11 rabss a B | F a Z A a B F a Z a A
12 fvres a B F B a = F a
13 12 adantl F Fn A B F W Z V A B = a B F B a = F a
14 simp2r F Fn A B F W Z V A B = Z V
15 fvconst2g Z V a B B × Z a = Z
16 14 15 sylan F Fn A B F W Z V A B = a B B × Z a = Z
17 13 16 eqeq12d F Fn A B F W Z V A B = a B F B a = B × Z a F a = Z
18 nne ¬ F a Z F a = Z
19 18 a1i F Fn A B F W Z V A B = a B ¬ F a Z F a = Z
20 id a B a B
21 simp3 F Fn A B F W Z V A B = A B =
22 minel a B A B = ¬ a A
23 20 21 22 syl2anr F Fn A B F W Z V A B = a B ¬ a A
24 mtt ¬ a A ¬ F a Z F a Z a A
25 23 24 syl F Fn A B F W Z V A B = a B ¬ F a Z F a Z a A
26 17 19 25 3bitr2rd F Fn A B F W Z V A B = a B F a Z a A F B a = B × Z a
27 26 ralbidva F Fn A B F W Z V A B = a B F a Z a A a B F B a = B × Z a
28 11 27 bitrid F Fn A B F W Z V A B = a B | F a Z A a B F B a = B × Z a
29 10 28 bitrid F Fn A B F W Z V A B = a A B | F a Z A a B F B a = B × Z a
30 4 29 bitrd F Fn A B F W Z V A B = a dom F | F a Z A a B F B a = B × Z a
31 fnfun F Fn A B Fun F
32 31 3anim1i F Fn A B F W Z V Fun F F W Z V
33 32 3expb F Fn A B F W Z V Fun F F W Z V
34 suppval1 Fun F F W Z V F supp Z = a dom F | F a Z
35 33 34 syl F Fn A B F W Z V F supp Z = a dom F | F a Z
36 35 3adant3 F Fn A B F W Z V A B = F supp Z = a dom F | F a Z
37 36 sseq1d F Fn A B F W Z V A B = F supp Z A a dom F | F a Z A
38 simp1 F Fn A B F W Z V A B = F Fn A B
39 ssun2 B A B
40 39 a1i F Fn A B F W Z V A B = B A B
41 fnssres F Fn A B B A B F B Fn B
42 38 40 41 syl2anc F Fn A B F W Z V A B = F B Fn B
43 fnconstg Z V B × Z Fn B
44 43 adantl F W Z V B × Z Fn B
45 44 3ad2ant2 F Fn A B F W Z V A B = B × Z Fn B
46 eqfnfv F B Fn B B × Z Fn B F B = B × Z a B F B a = B × Z a
47 42 45 46 syl2anc F Fn A B F W Z V A B = F B = B × Z a B F B a = B × Z a
48 30 37 47 3bitr4d F Fn A B F W Z V A B = F supp Z A F B = B × Z