| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fndm |
⊢ ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) → dom 𝐹 = ( 𝐴 ∪ 𝐵 ) ) |
| 2 |
1
|
rabeqdv |
⊢ ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) → { 𝑎 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } = { 𝑎 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ) |
| 3 |
2
|
3ad2ant1 |
⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → { 𝑎 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } = { 𝑎 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ) |
| 4 |
3
|
sseq1d |
⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( { 𝑎 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ↔ { 𝑎 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ) ) |
| 5 |
|
unss |
⊢ ( ( { 𝑎 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ∧ { 𝑎 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ) ↔ ( { 𝑎 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ∪ { 𝑎 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ) ⊆ 𝐴 ) |
| 6 |
|
ssrab2 |
⊢ { 𝑎 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 |
| 7 |
6
|
biantrur |
⊢ ( { 𝑎 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ↔ ( { 𝑎 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ∧ { 𝑎 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ) ) |
| 8 |
|
rabun2 |
⊢ { 𝑎 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } = ( { 𝑎 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ∪ { 𝑎 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ) |
| 9 |
8
|
sseq1i |
⊢ ( { 𝑎 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ↔ ( { 𝑎 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ∪ { 𝑎 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ) ⊆ 𝐴 ) |
| 10 |
5 7 9
|
3bitr4ri |
⊢ ( { 𝑎 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ↔ { 𝑎 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ) |
| 11 |
|
rabss |
⊢ ( { 𝑎 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ↔ ∀ 𝑎 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 → 𝑎 ∈ 𝐴 ) ) |
| 12 |
|
fvres |
⊢ ( 𝑎 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 13 |
12
|
adantl |
⊢ ( ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 14 |
|
simp2r |
⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝑍 ∈ 𝑉 ) |
| 15 |
|
fvconst2g |
⊢ ( ( 𝑍 ∈ 𝑉 ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝐵 × { 𝑍 } ) ‘ 𝑎 ) = 𝑍 ) |
| 16 |
14 15
|
sylan |
⊢ ( ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝐵 × { 𝑍 } ) ‘ 𝑎 ) = 𝑍 ) |
| 17 |
13 16
|
eqeq12d |
⊢ ( ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ 𝐵 ) → ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑎 ) = ( ( 𝐵 × { 𝑍 } ) ‘ 𝑎 ) ↔ ( 𝐹 ‘ 𝑎 ) = 𝑍 ) ) |
| 18 |
|
nne |
⊢ ( ¬ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑍 ) |
| 19 |
18
|
a1i |
⊢ ( ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ 𝐵 ) → ( ¬ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑍 ) ) |
| 20 |
|
id |
⊢ ( 𝑎 ∈ 𝐵 → 𝑎 ∈ 𝐵 ) |
| 21 |
|
simp3 |
⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
| 22 |
|
minel |
⊢ ( ( 𝑎 ∈ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ¬ 𝑎 ∈ 𝐴 ) |
| 23 |
20 21 22
|
syl2anr |
⊢ ( ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ 𝐵 ) → ¬ 𝑎 ∈ 𝐴 ) |
| 24 |
|
mtt |
⊢ ( ¬ 𝑎 ∈ 𝐴 → ( ¬ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 ↔ ( ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 → 𝑎 ∈ 𝐴 ) ) ) |
| 25 |
23 24
|
syl |
⊢ ( ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ 𝐵 ) → ( ¬ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 ↔ ( ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 → 𝑎 ∈ 𝐴 ) ) ) |
| 26 |
17 19 25
|
3bitr2rd |
⊢ ( ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 → 𝑎 ∈ 𝐴 ) ↔ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑎 ) = ( ( 𝐵 × { 𝑍 } ) ‘ 𝑎 ) ) ) |
| 27 |
26
|
ralbidva |
⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ∀ 𝑎 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 → 𝑎 ∈ 𝐴 ) ↔ ∀ 𝑎 ∈ 𝐵 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑎 ) = ( ( 𝐵 × { 𝑍 } ) ‘ 𝑎 ) ) ) |
| 28 |
11 27
|
bitrid |
⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( { 𝑎 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ↔ ∀ 𝑎 ∈ 𝐵 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑎 ) = ( ( 𝐵 × { 𝑍 } ) ‘ 𝑎 ) ) ) |
| 29 |
10 28
|
bitrid |
⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( { 𝑎 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ↔ ∀ 𝑎 ∈ 𝐵 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑎 ) = ( ( 𝐵 × { 𝑍 } ) ‘ 𝑎 ) ) ) |
| 30 |
4 29
|
bitrd |
⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( { 𝑎 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ↔ ∀ 𝑎 ∈ 𝐵 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑎 ) = ( ( 𝐵 × { 𝑍 } ) ‘ 𝑎 ) ) ) |
| 31 |
|
fnfun |
⊢ ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) → Fun 𝐹 ) |
| 32 |
31
|
3anim1i |
⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) → ( Fun 𝐹 ∧ 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ) |
| 33 |
32
|
3expb |
⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ) → ( Fun 𝐹 ∧ 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ) |
| 34 |
|
suppval1 |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) → ( 𝐹 supp 𝑍 ) = { 𝑎 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ) |
| 35 |
33 34
|
syl |
⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ) → ( 𝐹 supp 𝑍 ) = { 𝑎 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ) |
| 36 |
35
|
3adant3 |
⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐹 supp 𝑍 ) = { 𝑎 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ) |
| 37 |
36
|
sseq1d |
⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝐹 supp 𝑍 ) ⊆ 𝐴 ↔ { 𝑎 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑎 ) ≠ 𝑍 } ⊆ 𝐴 ) ) |
| 38 |
|
simp1 |
⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ) |
| 39 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 40 |
39
|
a1i |
⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 41 |
|
fnssres |
⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ) → ( 𝐹 ↾ 𝐵 ) Fn 𝐵 ) |
| 42 |
38 40 41
|
syl2anc |
⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐹 ↾ 𝐵 ) Fn 𝐵 ) |
| 43 |
|
fnconstg |
⊢ ( 𝑍 ∈ 𝑉 → ( 𝐵 × { 𝑍 } ) Fn 𝐵 ) |
| 44 |
43
|
adantl |
⊢ ( ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) → ( 𝐵 × { 𝑍 } ) Fn 𝐵 ) |
| 45 |
44
|
3ad2ant2 |
⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐵 × { 𝑍 } ) Fn 𝐵 ) |
| 46 |
|
eqfnfv |
⊢ ( ( ( 𝐹 ↾ 𝐵 ) Fn 𝐵 ∧ ( 𝐵 × { 𝑍 } ) Fn 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) = ( 𝐵 × { 𝑍 } ) ↔ ∀ 𝑎 ∈ 𝐵 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑎 ) = ( ( 𝐵 × { 𝑍 } ) ‘ 𝑎 ) ) ) |
| 47 |
42 45 46
|
syl2anc |
⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝐹 ↾ 𝐵 ) = ( 𝐵 × { 𝑍 } ) ↔ ∀ 𝑎 ∈ 𝐵 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑎 ) = ( ( 𝐵 × { 𝑍 } ) ‘ 𝑎 ) ) ) |
| 48 |
30 37 47
|
3bitr4d |
⊢ ( ( 𝐹 Fn ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝐹 supp 𝑍 ) ⊆ 𝐴 ↔ ( 𝐹 ↾ 𝐵 ) = ( 𝐵 × { 𝑍 } ) ) ) |