Step |
Hyp |
Ref |
Expression |
1 |
|
mdegval.d |
⊢ 𝐷 = ( 𝐼 mDeg 𝑅 ) |
2 |
|
mdegval.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
3 |
|
mdegval.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
mdegval.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
mdegval.a |
⊢ 𝐴 = { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } |
6 |
|
mdegval.h |
⊢ 𝐻 = ( ℎ ∈ 𝐴 ↦ ( ℂfld Σg ℎ ) ) |
7 |
|
mdegldg.y |
⊢ 𝑌 = ( 0g ‘ 𝑃 ) |
8 |
1 2 3 4 5 6
|
mdegval |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐷 ‘ 𝐹 ) = sup ( ( 𝐻 “ ( 𝐹 supp 0 ) ) , ℝ* , < ) ) |
9 |
8
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → ( 𝐷 ‘ 𝐹 ) = sup ( ( 𝐻 “ ( 𝐹 supp 0 ) ) , ℝ* , < ) ) |
10 |
5 6
|
tdeglem1 |
⊢ 𝐻 : 𝐴 ⟶ ℕ0 |
11 |
10
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → 𝐻 : 𝐴 ⟶ ℕ0 ) |
12 |
11
|
ffund |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → Fun 𝐻 ) |
13 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → 𝐹 ∈ 𝐵 ) |
14 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → 𝑅 ∈ Ring ) |
15 |
2 3 4 13 14
|
mplelsfi |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → 𝐹 finSupp 0 ) |
16 |
15
|
fsuppimpd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → ( 𝐹 supp 0 ) ∈ Fin ) |
17 |
|
imafi |
⊢ ( ( Fun 𝐻 ∧ ( 𝐹 supp 0 ) ∈ Fin ) → ( 𝐻 “ ( 𝐹 supp 0 ) ) ∈ Fin ) |
18 |
12 16 17
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → ( 𝐻 “ ( 𝐹 supp 0 ) ) ∈ Fin ) |
19 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → 𝐹 ≠ 𝑌 ) |
20 |
2 3
|
mplrcl |
⊢ ( 𝐹 ∈ 𝐵 → 𝐼 ∈ V ) |
21 |
20
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → 𝐼 ∈ V ) |
22 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
23 |
22
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → 𝑅 ∈ Grp ) |
24 |
2 5 4 7 21 23
|
mpl0 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → 𝑌 = ( 𝐴 × { 0 } ) ) |
25 |
19 24
|
neeqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → 𝐹 ≠ ( 𝐴 × { 0 } ) ) |
26 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
27 |
2 26 3 5 13
|
mplelf |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → 𝐹 : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
28 |
27
|
ffnd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → 𝐹 Fn 𝐴 ) |
29 |
4
|
fvexi |
⊢ 0 ∈ V |
30 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
31 |
5 30
|
rabex2 |
⊢ 𝐴 ∈ V |
32 |
|
fnsuppeq0 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ V ∧ 0 ∈ V ) → ( ( 𝐹 supp 0 ) = ∅ ↔ 𝐹 = ( 𝐴 × { 0 } ) ) ) |
33 |
31 32
|
mp3an2 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 0 ∈ V ) → ( ( 𝐹 supp 0 ) = ∅ ↔ 𝐹 = ( 𝐴 × { 0 } ) ) ) |
34 |
28 29 33
|
sylancl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → ( ( 𝐹 supp 0 ) = ∅ ↔ 𝐹 = ( 𝐴 × { 0 } ) ) ) |
35 |
34
|
necon3bid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → ( ( 𝐹 supp 0 ) ≠ ∅ ↔ 𝐹 ≠ ( 𝐴 × { 0 } ) ) ) |
36 |
25 35
|
mpbird |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → ( 𝐹 supp 0 ) ≠ ∅ ) |
37 |
11
|
ffnd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → 𝐻 Fn 𝐴 ) |
38 |
|
suppssdm |
⊢ ( 𝐹 supp 0 ) ⊆ dom 𝐹 |
39 |
38 27
|
fssdm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → ( 𝐹 supp 0 ) ⊆ 𝐴 ) |
40 |
|
fnimaeq0 |
⊢ ( ( 𝐻 Fn 𝐴 ∧ ( 𝐹 supp 0 ) ⊆ 𝐴 ) → ( ( 𝐻 “ ( 𝐹 supp 0 ) ) = ∅ ↔ ( 𝐹 supp 0 ) = ∅ ) ) |
41 |
37 39 40
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → ( ( 𝐻 “ ( 𝐹 supp 0 ) ) = ∅ ↔ ( 𝐹 supp 0 ) = ∅ ) ) |
42 |
41
|
necon3bid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → ( ( 𝐻 “ ( 𝐹 supp 0 ) ) ≠ ∅ ↔ ( 𝐹 supp 0 ) ≠ ∅ ) ) |
43 |
36 42
|
mpbird |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → ( 𝐻 “ ( 𝐹 supp 0 ) ) ≠ ∅ ) |
44 |
|
imassrn |
⊢ ( 𝐻 “ ( 𝐹 supp 0 ) ) ⊆ ran 𝐻 |
45 |
11
|
frnd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → ran 𝐻 ⊆ ℕ0 ) |
46 |
44 45
|
sstrid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → ( 𝐻 “ ( 𝐹 supp 0 ) ) ⊆ ℕ0 ) |
47 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
48 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
49 |
47 48
|
sstri |
⊢ ℕ0 ⊆ ℝ* |
50 |
46 49
|
sstrdi |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → ( 𝐻 “ ( 𝐹 supp 0 ) ) ⊆ ℝ* ) |
51 |
|
xrltso |
⊢ < Or ℝ* |
52 |
|
fisupcl |
⊢ ( ( < Or ℝ* ∧ ( ( 𝐻 “ ( 𝐹 supp 0 ) ) ∈ Fin ∧ ( 𝐻 “ ( 𝐹 supp 0 ) ) ≠ ∅ ∧ ( 𝐻 “ ( 𝐹 supp 0 ) ) ⊆ ℝ* ) ) → sup ( ( 𝐻 “ ( 𝐹 supp 0 ) ) , ℝ* , < ) ∈ ( 𝐻 “ ( 𝐹 supp 0 ) ) ) |
53 |
51 52
|
mpan |
⊢ ( ( ( 𝐻 “ ( 𝐹 supp 0 ) ) ∈ Fin ∧ ( 𝐻 “ ( 𝐹 supp 0 ) ) ≠ ∅ ∧ ( 𝐻 “ ( 𝐹 supp 0 ) ) ⊆ ℝ* ) → sup ( ( 𝐻 “ ( 𝐹 supp 0 ) ) , ℝ* , < ) ∈ ( 𝐻 “ ( 𝐹 supp 0 ) ) ) |
54 |
18 43 50 53
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → sup ( ( 𝐻 “ ( 𝐹 supp 0 ) ) , ℝ* , < ) ∈ ( 𝐻 “ ( 𝐹 supp 0 ) ) ) |
55 |
9 54
|
eqeltrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → ( 𝐷 ‘ 𝐹 ) ∈ ( 𝐻 “ ( 𝐹 supp 0 ) ) ) |
56 |
37 39
|
fvelimabd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → ( ( 𝐷 ‘ 𝐹 ) ∈ ( 𝐻 “ ( 𝐹 supp 0 ) ) ↔ ∃ 𝑥 ∈ ( 𝐹 supp 0 ) ( 𝐻 ‘ 𝑥 ) = ( 𝐷 ‘ 𝐹 ) ) ) |
57 |
|
rexsupp |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ V ∧ 0 ∈ V ) → ( ∃ 𝑥 ∈ ( 𝐹 supp 0 ) ( 𝐻 ‘ 𝑥 ) = ( 𝐷 ‘ 𝐹 ) ↔ ∃ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∧ ( 𝐻 ‘ 𝑥 ) = ( 𝐷 ‘ 𝐹 ) ) ) ) |
58 |
31 29 57
|
mp3an23 |
⊢ ( 𝐹 Fn 𝐴 → ( ∃ 𝑥 ∈ ( 𝐹 supp 0 ) ( 𝐻 ‘ 𝑥 ) = ( 𝐷 ‘ 𝐹 ) ↔ ∃ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∧ ( 𝐻 ‘ 𝑥 ) = ( 𝐷 ‘ 𝐹 ) ) ) ) |
59 |
28 58
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → ( ∃ 𝑥 ∈ ( 𝐹 supp 0 ) ( 𝐻 ‘ 𝑥 ) = ( 𝐷 ‘ 𝐹 ) ↔ ∃ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∧ ( 𝐻 ‘ 𝑥 ) = ( 𝐷 ‘ 𝐹 ) ) ) ) |
60 |
56 59
|
bitrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → ( ( 𝐷 ‘ 𝐹 ) ∈ ( 𝐻 “ ( 𝐹 supp 0 ) ) ↔ ∃ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∧ ( 𝐻 ‘ 𝑥 ) = ( 𝐷 ‘ 𝐹 ) ) ) ) |
61 |
55 60
|
mpbid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌 ) → ∃ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ∧ ( 𝐻 ‘ 𝑥 ) = ( 𝐷 ‘ 𝐹 ) ) ) |