Metamath Proof Explorer


Theorem tdeglem1

Description: Functionality of the total degree helper function. (Contributed by Stefan O'Rear, 19-Mar-2015) (Proof shortened by AV, 27-Jul-2019) Remove sethood antecedent. (Revised by SN, 7-Aug-2024)

Ref Expression
Hypotheses tdeglem.a 𝐴 = { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin }
tdeglem.h 𝐻 = ( 𝐴 ↦ ( ℂfld Σg ) )
Assertion tdeglem1 𝐻 : 𝐴 ⟶ ℕ0

Proof

Step Hyp Ref Expression
1 tdeglem.a 𝐴 = { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin }
2 tdeglem.h 𝐻 = ( 𝐴 ↦ ( ℂfld Σg ) )
3 cnfld0 0 = ( 0g ‘ ℂfld )
4 cnring fld ∈ Ring
5 ringcmn ( ℂfld ∈ Ring → ℂfld ∈ CMnd )
6 4 5 mp1i ( 𝐴 → ℂfld ∈ CMnd )
7 id ( 𝐴𝐴 )
8 1 psrbagf ( 𝐴 : 𝐼 ⟶ ℕ0 )
9 8 ffnd ( 𝐴 Fn 𝐼 )
10 7 9 fndmexd ( 𝐴𝐼 ∈ V )
11 nn0subm 0 ∈ ( SubMnd ‘ ℂfld )
12 11 a1i ( 𝐴 → ℕ0 ∈ ( SubMnd ‘ ℂfld ) )
13 1 psrbagfsupp ( 𝐴 finSupp 0 )
14 3 6 10 12 8 13 gsumsubmcl ( 𝐴 → ( ℂfld Σg ) ∈ ℕ0 )
15 2 14 fmpti 𝐻 : 𝐴 ⟶ ℕ0