Metamath Proof Explorer


Theorem mdeglt

Description: If there is an upper limit on the degree of a polynomial that is lower than the degree of some exponent bag, then that exponent bag is unrepresented in the polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015) (Proof shortened by AV, 27-Jul-2019)

Ref Expression
Hypotheses mdegval.d 𝐷 = ( 𝐼 mDeg 𝑅 )
mdegval.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mdegval.b 𝐵 = ( Base ‘ 𝑃 )
mdegval.z 0 = ( 0g𝑅 )
mdegval.a 𝐴 = { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin }
mdegval.h 𝐻 = ( 𝐴 ↦ ( ℂfld Σg ) )
mdeglt.f ( 𝜑𝐹𝐵 )
medglt.x ( 𝜑𝑋𝐴 )
mdeglt.lt ( 𝜑 → ( 𝐷𝐹 ) < ( 𝐻𝑋 ) )
Assertion mdeglt ( 𝜑 → ( 𝐹𝑋 ) = 0 )

Proof

Step Hyp Ref Expression
1 mdegval.d 𝐷 = ( 𝐼 mDeg 𝑅 )
2 mdegval.p 𝑃 = ( 𝐼 mPoly 𝑅 )
3 mdegval.b 𝐵 = ( Base ‘ 𝑃 )
4 mdegval.z 0 = ( 0g𝑅 )
5 mdegval.a 𝐴 = { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin }
6 mdegval.h 𝐻 = ( 𝐴 ↦ ( ℂfld Σg ) )
7 mdeglt.f ( 𝜑𝐹𝐵 )
8 medglt.x ( 𝜑𝑋𝐴 )
9 mdeglt.lt ( 𝜑 → ( 𝐷𝐹 ) < ( 𝐻𝑋 ) )
10 fveq2 ( 𝑥 = 𝑋 → ( 𝐻𝑥 ) = ( 𝐻𝑋 ) )
11 10 breq2d ( 𝑥 = 𝑋 → ( ( 𝐷𝐹 ) < ( 𝐻𝑥 ) ↔ ( 𝐷𝐹 ) < ( 𝐻𝑋 ) ) )
12 fveqeq2 ( 𝑥 = 𝑋 → ( ( 𝐹𝑥 ) = 0 ↔ ( 𝐹𝑋 ) = 0 ) )
13 11 12 imbi12d ( 𝑥 = 𝑋 → ( ( ( 𝐷𝐹 ) < ( 𝐻𝑥 ) → ( 𝐹𝑥 ) = 0 ) ↔ ( ( 𝐷𝐹 ) < ( 𝐻𝑋 ) → ( 𝐹𝑋 ) = 0 ) ) )
14 1 2 3 4 5 6 mdegval ( 𝐹𝐵 → ( 𝐷𝐹 ) = sup ( ( 𝐻 “ ( 𝐹 supp 0 ) ) , ℝ* , < ) )
15 7 14 syl ( 𝜑 → ( 𝐷𝐹 ) = sup ( ( 𝐻 “ ( 𝐹 supp 0 ) ) , ℝ* , < ) )
16 imassrn ( 𝐻 “ ( 𝐹 supp 0 ) ) ⊆ ran 𝐻
17 2 3 mplrcl ( 𝐹𝐵𝐼 ∈ V )
18 5 6 tdeglem1 ( 𝐼 ∈ V → 𝐻 : 𝐴 ⟶ ℕ0 )
19 frn ( 𝐻 : 𝐴 ⟶ ℕ0 → ran 𝐻 ⊆ ℕ0 )
20 7 17 18 19 4syl ( 𝜑 → ran 𝐻 ⊆ ℕ0 )
21 nn0ssre 0 ⊆ ℝ
22 ressxr ℝ ⊆ ℝ*
23 21 22 sstri 0 ⊆ ℝ*
24 20 23 sstrdi ( 𝜑 → ran 𝐻 ⊆ ℝ* )
25 16 24 sstrid ( 𝜑 → ( 𝐻 “ ( 𝐹 supp 0 ) ) ⊆ ℝ* )
26 supxrcl ( ( 𝐻 “ ( 𝐹 supp 0 ) ) ⊆ ℝ* → sup ( ( 𝐻 “ ( 𝐹 supp 0 ) ) , ℝ* , < ) ∈ ℝ* )
27 25 26 syl ( 𝜑 → sup ( ( 𝐻 “ ( 𝐹 supp 0 ) ) , ℝ* , < ) ∈ ℝ* )
28 15 27 eqeltrd ( 𝜑 → ( 𝐷𝐹 ) ∈ ℝ* )
29 28 xrleidd ( 𝜑 → ( 𝐷𝐹 ) ≤ ( 𝐷𝐹 ) )
30 1 2 3 4 5 6 mdegleb ( ( 𝐹𝐵 ∧ ( 𝐷𝐹 ) ∈ ℝ* ) → ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐹 ) ↔ ∀ 𝑥𝐴 ( ( 𝐷𝐹 ) < ( 𝐻𝑥 ) → ( 𝐹𝑥 ) = 0 ) ) )
31 7 28 30 syl2anc ( 𝜑 → ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐹 ) ↔ ∀ 𝑥𝐴 ( ( 𝐷𝐹 ) < ( 𝐻𝑥 ) → ( 𝐹𝑥 ) = 0 ) ) )
32 29 31 mpbid ( 𝜑 → ∀ 𝑥𝐴 ( ( 𝐷𝐹 ) < ( 𝐻𝑥 ) → ( 𝐹𝑥 ) = 0 ) )
33 13 32 8 rspcdva ( 𝜑 → ( ( 𝐷𝐹 ) < ( 𝐻𝑋 ) → ( 𝐹𝑋 ) = 0 ) )
34 9 33 mpd ( 𝜑 → ( 𝐹𝑋 ) = 0 )