Step |
Hyp |
Ref |
Expression |
1 |
|
mdegval.d |
⊢ 𝐷 = ( 𝐼 mDeg 𝑅 ) |
2 |
|
mdegval.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
3 |
|
mdegval.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
mdegval.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
mdegval.a |
⊢ 𝐴 = { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } |
6 |
|
mdegval.h |
⊢ 𝐻 = ( ℎ ∈ 𝐴 ↦ ( ℂfld Σg ℎ ) ) |
7 |
1 2 3 4 5 6
|
mdegval |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐷 ‘ 𝐹 ) = sup ( ( 𝐻 “ ( 𝐹 supp 0 ) ) , ℝ* , < ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) → ( 𝐷 ‘ 𝐹 ) = sup ( ( 𝐻 “ ( 𝐹 supp 0 ) ) , ℝ* , < ) ) |
9 |
8
|
breq1d |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) → ( ( 𝐷 ‘ 𝐹 ) ≤ 𝐺 ↔ sup ( ( 𝐻 “ ( 𝐹 supp 0 ) ) , ℝ* , < ) ≤ 𝐺 ) ) |
10 |
|
imassrn |
⊢ ( 𝐻 “ ( 𝐹 supp 0 ) ) ⊆ ran 𝐻 |
11 |
5 6
|
tdeglem1 |
⊢ 𝐻 : 𝐴 ⟶ ℕ0 |
12 |
11
|
a1i |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) → 𝐻 : 𝐴 ⟶ ℕ0 ) |
13 |
12
|
frnd |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) → ran 𝐻 ⊆ ℕ0 ) |
14 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
15 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
16 |
14 15
|
sstri |
⊢ ℕ0 ⊆ ℝ* |
17 |
13 16
|
sstrdi |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) → ran 𝐻 ⊆ ℝ* ) |
18 |
10 17
|
sstrid |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) → ( 𝐻 “ ( 𝐹 supp 0 ) ) ⊆ ℝ* ) |
19 |
|
supxrleub |
⊢ ( ( ( 𝐻 “ ( 𝐹 supp 0 ) ) ⊆ ℝ* ∧ 𝐺 ∈ ℝ* ) → ( sup ( ( 𝐻 “ ( 𝐹 supp 0 ) ) , ℝ* , < ) ≤ 𝐺 ↔ ∀ 𝑦 ∈ ( 𝐻 “ ( 𝐹 supp 0 ) ) 𝑦 ≤ 𝐺 ) ) |
20 |
18 19
|
sylancom |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) → ( sup ( ( 𝐻 “ ( 𝐹 supp 0 ) ) , ℝ* , < ) ≤ 𝐺 ↔ ∀ 𝑦 ∈ ( 𝐻 “ ( 𝐹 supp 0 ) ) 𝑦 ≤ 𝐺 ) ) |
21 |
12
|
ffnd |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) → 𝐻 Fn 𝐴 ) |
22 |
|
suppssdm |
⊢ ( 𝐹 supp 0 ) ⊆ dom 𝐹 |
23 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
24 |
|
simpl |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) → 𝐹 ∈ 𝐵 ) |
25 |
2 23 3 5 24
|
mplelf |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) → 𝐹 : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
26 |
22 25
|
fssdm |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) → ( 𝐹 supp 0 ) ⊆ 𝐴 ) |
27 |
|
breq1 |
⊢ ( 𝑦 = ( 𝐻 ‘ 𝑥 ) → ( 𝑦 ≤ 𝐺 ↔ ( 𝐻 ‘ 𝑥 ) ≤ 𝐺 ) ) |
28 |
27
|
ralima |
⊢ ( ( 𝐻 Fn 𝐴 ∧ ( 𝐹 supp 0 ) ⊆ 𝐴 ) → ( ∀ 𝑦 ∈ ( 𝐻 “ ( 𝐹 supp 0 ) ) 𝑦 ≤ 𝐺 ↔ ∀ 𝑥 ∈ ( 𝐹 supp 0 ) ( 𝐻 ‘ 𝑥 ) ≤ 𝐺 ) ) |
29 |
21 26 28
|
syl2anc |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) → ( ∀ 𝑦 ∈ ( 𝐻 “ ( 𝐹 supp 0 ) ) 𝑦 ≤ 𝐺 ↔ ∀ 𝑥 ∈ ( 𝐹 supp 0 ) ( 𝐻 ‘ 𝑥 ) ≤ 𝐺 ) ) |
30 |
25
|
ffnd |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) → 𝐹 Fn 𝐴 ) |
31 |
4
|
fvexi |
⊢ 0 ∈ V |
32 |
31
|
a1i |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) → 0 ∈ V ) |
33 |
|
elsuppfng |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐹 ∈ 𝐵 ∧ 0 ∈ V ) → ( 𝑥 ∈ ( 𝐹 supp 0 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ) ) |
34 |
30 24 32 33
|
syl3anc |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐹 supp 0 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ) ) |
35 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
36 |
35
|
biantrur |
⊢ ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ V ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ) |
37 |
|
eldifsn |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( V ∖ { 0 } ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ V ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ) |
38 |
36 37
|
bitr4i |
⊢ ( ( 𝐹 ‘ 𝑥 ) ≠ 0 ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( V ∖ { 0 } ) ) |
39 |
38
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( V ∖ { 0 } ) ) ) |
40 |
34 39
|
bitrdi |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐹 supp 0 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( V ∖ { 0 } ) ) ) ) |
41 |
40
|
imbi1d |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) → ( ( 𝑥 ∈ ( 𝐹 supp 0 ) → ( 𝐻 ‘ 𝑥 ) ≤ 𝐺 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( V ∖ { 0 } ) ) → ( 𝐻 ‘ 𝑥 ) ≤ 𝐺 ) ) ) |
42 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( V ∖ { 0 } ) ) → ( 𝐻 ‘ 𝑥 ) ≤ 𝐺 ) ↔ ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑥 ) ∈ ( V ∖ { 0 } ) → ( 𝐻 ‘ 𝑥 ) ≤ 𝐺 ) ) ) |
43 |
|
con34b |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ( V ∖ { 0 } ) → ( 𝐻 ‘ 𝑥 ) ≤ 𝐺 ) ↔ ( ¬ ( 𝐻 ‘ 𝑥 ) ≤ 𝐺 → ¬ ( 𝐹 ‘ 𝑥 ) ∈ ( V ∖ { 0 } ) ) ) |
44 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → 𝐺 ∈ ℝ* ) |
45 |
12
|
ffvelrnda |
⊢ ( ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) ∈ ℕ0 ) |
46 |
16 45
|
sselid |
⊢ ( ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) ∈ ℝ* ) |
47 |
|
xrltnle |
⊢ ( ( 𝐺 ∈ ℝ* ∧ ( 𝐻 ‘ 𝑥 ) ∈ ℝ* ) → ( 𝐺 < ( 𝐻 ‘ 𝑥 ) ↔ ¬ ( 𝐻 ‘ 𝑥 ) ≤ 𝐺 ) ) |
48 |
44 46 47
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 < ( 𝐻 ‘ 𝑥 ) ↔ ¬ ( 𝐻 ‘ 𝑥 ) ≤ 𝐺 ) ) |
49 |
48
|
bicomd |
⊢ ( ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ ( 𝐻 ‘ 𝑥 ) ≤ 𝐺 ↔ 𝐺 < ( 𝐻 ‘ 𝑥 ) ) ) |
50 |
|
ianor |
⊢ ( ¬ ( ( 𝐹 ‘ 𝑥 ) ∈ V ∧ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ↔ ( ¬ ( 𝐹 ‘ 𝑥 ) ∈ V ∨ ¬ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ) |
51 |
50 37
|
xchnxbir |
⊢ ( ¬ ( 𝐹 ‘ 𝑥 ) ∈ ( V ∖ { 0 } ) ↔ ( ¬ ( 𝐹 ‘ 𝑥 ) ∈ V ∨ ¬ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ) |
52 |
|
orcom |
⊢ ( ( ¬ ( 𝐹 ‘ 𝑥 ) ∈ V ∨ ¬ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ↔ ( ¬ ( 𝐹 ‘ 𝑥 ) ≠ 0 ∨ ¬ ( 𝐹 ‘ 𝑥 ) ∈ V ) ) |
53 |
35
|
notnoti |
⊢ ¬ ¬ ( 𝐹 ‘ 𝑥 ) ∈ V |
54 |
53
|
biorfi |
⊢ ( ¬ ( 𝐹 ‘ 𝑥 ) ≠ 0 ↔ ( ¬ ( 𝐹 ‘ 𝑥 ) ≠ 0 ∨ ¬ ( 𝐹 ‘ 𝑥 ) ∈ V ) ) |
55 |
|
nne |
⊢ ( ¬ ( 𝐹 ‘ 𝑥 ) ≠ 0 ↔ ( 𝐹 ‘ 𝑥 ) = 0 ) |
56 |
52 54 55
|
3bitr2i |
⊢ ( ( ¬ ( 𝐹 ‘ 𝑥 ) ∈ V ∨ ¬ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ↔ ( 𝐹 ‘ 𝑥 ) = 0 ) |
57 |
56
|
a1i |
⊢ ( ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ¬ ( 𝐹 ‘ 𝑥 ) ∈ V ∨ ¬ ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ↔ ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
58 |
51 57
|
syl5bb |
⊢ ( ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ ( 𝐹 ‘ 𝑥 ) ∈ ( V ∖ { 0 } ) ↔ ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
59 |
49 58
|
imbi12d |
⊢ ( ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ¬ ( 𝐻 ‘ 𝑥 ) ≤ 𝐺 → ¬ ( 𝐹 ‘ 𝑥 ) ∈ ( V ∖ { 0 } ) ) ↔ ( 𝐺 < ( 𝐻 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = 0 ) ) ) |
60 |
43 59
|
syl5bb |
⊢ ( ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝑥 ) ∈ ( V ∖ { 0 } ) → ( 𝐻 ‘ 𝑥 ) ≤ 𝐺 ) ↔ ( 𝐺 < ( 𝐻 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = 0 ) ) ) |
61 |
60
|
pm5.74da |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) → ( ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑥 ) ∈ ( V ∖ { 0 } ) → ( 𝐻 ‘ 𝑥 ) ≤ 𝐺 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝐺 < ( 𝐻 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = 0 ) ) ) ) |
62 |
42 61
|
syl5bb |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) → ( ( ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( V ∖ { 0 } ) ) → ( 𝐻 ‘ 𝑥 ) ≤ 𝐺 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝐺 < ( 𝐻 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = 0 ) ) ) ) |
63 |
41 62
|
bitrd |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) → ( ( 𝑥 ∈ ( 𝐹 supp 0 ) → ( 𝐻 ‘ 𝑥 ) ≤ 𝐺 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝐺 < ( 𝐻 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = 0 ) ) ) ) |
64 |
63
|
ralbidv2 |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) → ( ∀ 𝑥 ∈ ( 𝐹 supp 0 ) ( 𝐻 ‘ 𝑥 ) ≤ 𝐺 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐺 < ( 𝐻 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = 0 ) ) ) |
65 |
29 64
|
bitrd |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) → ( ∀ 𝑦 ∈ ( 𝐻 “ ( 𝐹 supp 0 ) ) 𝑦 ≤ 𝐺 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐺 < ( 𝐻 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = 0 ) ) ) |
66 |
9 20 65
|
3bitrd |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ* ) → ( ( 𝐷 ‘ 𝐹 ) ≤ 𝐺 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐺 < ( 𝐻 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = 0 ) ) ) |