Metamath Proof Explorer


Theorem deg1val

Description: Value of the univariate degree as a supremum. (Contributed by Stefan O'Rear, 29-Mar-2015) (Revised by AV, 25-Jul-2019)

Ref Expression
Hypotheses deg1leb.d D=deg1R
deg1leb.p P=Poly1R
deg1leb.b B=BaseP
deg1leb.y 0˙=0R
deg1leb.a A=coe1F
Assertion deg1val FBDF=supAsupp0˙*<

Proof

Step Hyp Ref Expression
1 deg1leb.d D=deg1R
2 deg1leb.p P=Poly1R
3 deg1leb.b B=BaseP
4 deg1leb.y 0˙=0R
5 deg1leb.a A=coe1F
6 1 deg1fval D=1𝑜mDegR
7 eqid 1𝑜mPolyR=1𝑜mPolyR
8 eqid PwSer1R=PwSer1R
9 2 8 3 ply1bas B=Base1𝑜mPolyR
10 psr1baslem 01𝑜=y01𝑜|y-1Fin
11 tdeglem2 x01𝑜x=x01𝑜fldx
12 6 7 9 4 10 11 mdegval FBDF=supx01𝑜xFsupp0˙*<
13 4 fvexi 0˙V
14 suppimacnv FB0˙VFsupp0˙=F-1V0˙
15 13 14 mpan2 FBFsupp0˙=F-1V0˙
16 15 imaeq2d FBx01𝑜xFsupp0˙=x01𝑜xF-1V0˙
17 imaco x01𝑜xF-1V0˙=x01𝑜xF-1V0˙
18 16 17 eqtr4di FBx01𝑜xFsupp0˙=x01𝑜xF-1V0˙
19 df1o2 1𝑜=
20 nn0ex 0V
21 0ex V
22 eqid x01𝑜x=x01𝑜x
23 19 20 21 22 mapsncnv x01𝑜x-1=y01𝑜×y
24 5 3 2 23 coe1fval2 FBA=Fx01𝑜x-1
25 24 cnveqd FBA-1=Fx01𝑜x-1-1
26 cnvco Fx01𝑜x-1-1=x01𝑜x-1-1F-1
27 cocnvcnv1 x01𝑜x-1-1F-1=x01𝑜xF-1
28 26 27 eqtri Fx01𝑜x-1-1=x01𝑜xF-1
29 25 28 eqtr2di FBx01𝑜xF-1=A-1
30 29 imaeq1d FBx01𝑜xF-1V0˙=A-1V0˙
31 18 30 eqtrd FBx01𝑜xFsupp0˙=A-1V0˙
32 5 fvexi AV
33 suppimacnv AV0˙VAsupp0˙=A-1V0˙
34 33 eqcomd AV0˙VA-1V0˙=Asupp0˙
35 32 13 34 mp2an A-1V0˙=Asupp0˙
36 31 35 eqtrdi FBx01𝑜xFsupp0˙=Asupp0˙
37 36 supeq1d FBsupx01𝑜xFsupp0˙*<=supAsupp0˙*<
38 12 37 eqtrd FBDF=supAsupp0˙*<