Metamath Proof Explorer


Theorem evl1fpws

Description: Evaluation of a univariate polynomial as a function in a power series. (Contributed by Thierry Arnoux, 23-Jan-2025)

Ref Expression
Hypotheses evl1fpws.q O = eval 1 R
evl1fpws.w W = Poly 1 R
evl1fpws.b B = Base R
evl1fpws.u U = Base W
evl1fpws.s φ R CRing
evl1fpws.y φ M U
evl1fpws.1 · ˙ = R
evl1fpws.2 × ˙ = mulGrp R
evl1fpws.a A = coe 1 M
Assertion evl1fpws φ O M = x B R k 0 A k · ˙ k × ˙ x

Proof

Step Hyp Ref Expression
1 evl1fpws.q O = eval 1 R
2 evl1fpws.w W = Poly 1 R
3 evl1fpws.b B = Base R
4 evl1fpws.u U = Base W
5 evl1fpws.s φ R CRing
6 evl1fpws.y φ M U
7 evl1fpws.1 · ˙ = R
8 evl1fpws.2 × ˙ = mulGrp R
9 evl1fpws.a A = coe 1 M
10 1 3 evl1fval1 O = R evalSub 1 B
11 10 fveq1i O M = R evalSub 1 B M
12 eqid R evalSub 1 B = R evalSub 1 B
13 eqid Poly 1 R 𝑠 B = Poly 1 R 𝑠 B
14 eqid R 𝑠 B = R 𝑠 B
15 eqid Base Poly 1 R 𝑠 B = Base Poly 1 R 𝑠 B
16 5 crngringd φ R Ring
17 3 subrgid R Ring B SubRing R
18 16 17 syl φ B SubRing R
19 3 ressid R CRing R 𝑠 B = R
20 5 19 syl φ R 𝑠 B = R
21 20 fveq2d φ Poly 1 R 𝑠 B = Poly 1 R
22 21 2 eqtr4di φ Poly 1 R 𝑠 B = W
23 22 fveq2d φ Base Poly 1 R 𝑠 B = Base W
24 23 4 eqtr4di φ Base Poly 1 R 𝑠 B = U
25 6 24 eleqtrrd φ M Base Poly 1 R 𝑠 B
26 12 3 13 14 15 5 18 25 7 8 9 evls1fpws φ R evalSub 1 B M = x B R k 0 A k · ˙ k × ˙ x
27 11 26 eqtrid φ O M = x B R k 0 A k · ˙ k × ˙ x