| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1dg1rt.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
ply1dg1rt.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 3 |
|
ply1dg1rt.o |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
| 4 |
|
ply1dg1rt.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
| 5 |
|
ply1dg1rt.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 6 |
|
ply1dg1rt.r |
⊢ ( 𝜑 → 𝑅 ∈ Field ) |
| 7 |
|
ply1dg1rt.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑈 ) |
| 8 |
|
ply1dg1rt.1 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) = 1 ) |
| 9 |
|
ply1dg1rt.x |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
| 10 |
|
ply1dg1rt.m |
⊢ / = ( /r ‘ 𝑅 ) |
| 11 |
|
ply1dg1rt.c |
⊢ 𝐶 = ( coe1 ‘ 𝐺 ) |
| 12 |
|
ply1dg1rt.a |
⊢ 𝐴 = ( 𝐶 ‘ 1 ) |
| 13 |
|
ply1dg1rt.b |
⊢ 𝐵 = ( 𝐶 ‘ 0 ) |
| 14 |
|
ply1dg1rt.z |
⊢ 𝑍 = ( ( 𝑁 ‘ 𝐵 ) / 𝐴 ) |
| 15 |
6
|
fldcrngd |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 17 |
3 1 2 15 16 7
|
evl1fvf |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐺 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 18 |
17
|
ffnd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐺 ) Fn ( Base ‘ 𝑅 ) ) |
| 19 |
|
fniniseg2 |
⊢ ( ( 𝑂 ‘ 𝐺 ) Fn ( Base ‘ 𝑅 ) → ( ◡ ( 𝑂 ‘ 𝐺 ) “ { 0 } ) = { 𝑥 ∈ ( Base ‘ 𝑅 ) ∣ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 0 } ) |
| 20 |
18 19
|
syl |
⊢ ( 𝜑 → ( ◡ ( 𝑂 ‘ 𝐺 ) “ { 0 } ) = { 𝑥 ∈ ( Base ‘ 𝑅 ) ∣ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 0 } ) |
| 21 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑍 → ( ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 0 ↔ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑍 ) = 0 ) ) |
| 22 |
15
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 23 |
15
|
crnggrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 24 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 25 |
11 2 1 16
|
coe1fvalcl |
⊢ ( ( 𝐺 ∈ 𝑈 ∧ 0 ∈ ℕ0 ) → ( 𝐶 ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 26 |
7 24 25
|
sylancl |
⊢ ( 𝜑 → ( 𝐶 ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 27 |
13 26
|
eqeltrid |
⊢ ( 𝜑 → 𝐵 ∈ ( Base ‘ 𝑅 ) ) |
| 28 |
16 9 23 27
|
grpinvcld |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝐵 ) ∈ ( Base ‘ 𝑅 ) ) |
| 29 |
6
|
flddrngd |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
| 30 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 31 |
11 2 1 16
|
coe1fvalcl |
⊢ ( ( 𝐺 ∈ 𝑈 ∧ 1 ∈ ℕ0 ) → ( 𝐶 ‘ 1 ) ∈ ( Base ‘ 𝑅 ) ) |
| 32 |
7 30 31
|
sylancl |
⊢ ( 𝜑 → ( 𝐶 ‘ 1 ) ∈ ( Base ‘ 𝑅 ) ) |
| 33 |
8
|
fveq2d |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝐷 ‘ 𝐺 ) ) = ( 𝐶 ‘ 1 ) ) |
| 34 |
8 30
|
eqeltrdi |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) ∈ ℕ0 ) |
| 35 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 36 |
4 1 35 2
|
deg1nn0clb |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝑈 ) → ( 𝐺 ≠ ( 0g ‘ 𝑃 ) ↔ ( 𝐷 ‘ 𝐺 ) ∈ ℕ0 ) ) |
| 37 |
36
|
biimpar |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝑈 ) ∧ ( 𝐷 ‘ 𝐺 ) ∈ ℕ0 ) → 𝐺 ≠ ( 0g ‘ 𝑃 ) ) |
| 38 |
22 7 34 37
|
syl21anc |
⊢ ( 𝜑 → 𝐺 ≠ ( 0g ‘ 𝑃 ) ) |
| 39 |
4 1 35 2 5 11
|
deg1ldg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝑈 ∧ 𝐺 ≠ ( 0g ‘ 𝑃 ) ) → ( 𝐶 ‘ ( 𝐷 ‘ 𝐺 ) ) ≠ 0 ) |
| 40 |
22 7 38 39
|
syl3anc |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝐷 ‘ 𝐺 ) ) ≠ 0 ) |
| 41 |
33 40
|
eqnetrrd |
⊢ ( 𝜑 → ( 𝐶 ‘ 1 ) ≠ 0 ) |
| 42 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
| 43 |
16 42 5
|
drngunit |
⊢ ( 𝑅 ∈ DivRing → ( ( 𝐶 ‘ 1 ) ∈ ( Unit ‘ 𝑅 ) ↔ ( ( 𝐶 ‘ 1 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐶 ‘ 1 ) ≠ 0 ) ) ) |
| 44 |
43
|
biimpar |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( ( 𝐶 ‘ 1 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐶 ‘ 1 ) ≠ 0 ) ) → ( 𝐶 ‘ 1 ) ∈ ( Unit ‘ 𝑅 ) ) |
| 45 |
29 32 41 44
|
syl12anc |
⊢ ( 𝜑 → ( 𝐶 ‘ 1 ) ∈ ( Unit ‘ 𝑅 ) ) |
| 46 |
12 45
|
eqeltrid |
⊢ ( 𝜑 → 𝐴 ∈ ( Unit ‘ 𝑅 ) ) |
| 47 |
16 42 10
|
dvrcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 ‘ 𝐵 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( ( 𝑁 ‘ 𝐵 ) / 𝐴 ) ∈ ( Base ‘ 𝑅 ) ) |
| 48 |
22 28 46 47
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐵 ) / 𝐴 ) ∈ ( Base ‘ 𝑅 ) ) |
| 49 |
14 48
|
eqeltrid |
⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝑅 ) ) |
| 50 |
|
eqidd |
⊢ ( 𝜑 → 𝑍 = 𝑍 ) |
| 51 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑍 → ( 𝑥 = 𝑍 ↔ 𝑍 = 𝑍 ) ) |
| 52 |
51
|
imbi1d |
⊢ ( 𝑥 = 𝑍 → ( ( 𝑥 = 𝑍 → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑍 ) = 0 ) ↔ ( 𝑍 = 𝑍 → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑍 ) = 0 ) ) ) |
| 53 |
|
fveq2 |
⊢ ( 𝑥 = 𝑍 → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑍 ) ) |
| 54 |
53
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = 𝑍 ) → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑍 ) ) |
| 55 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Grp ) |
| 56 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 57 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
| 58 |
12 32
|
eqeltrid |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 60 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 61 |
16 56 57 59 60
|
ringcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐴 ( .r ‘ 𝑅 ) 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 62 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑁 ‘ 𝐵 ) ∈ ( Base ‘ 𝑅 ) ) |
| 63 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝐵 ∈ ( Base ‘ 𝑅 ) ) |
| 64 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 65 |
16 64
|
grprcan |
⊢ ( ( 𝑅 ∈ Grp ∧ ( ( 𝐴 ( .r ‘ 𝑅 ) 𝑥 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑁 ‘ 𝐵 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝐵 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( 𝐴 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) 𝐵 ) = ( ( 𝑁 ‘ 𝐵 ) ( +g ‘ 𝑅 ) 𝐵 ) ↔ ( 𝐴 ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑁 ‘ 𝐵 ) ) ) |
| 66 |
55 61 62 63 65
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 𝐴 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) 𝐵 ) = ( ( 𝑁 ‘ 𝐵 ) ( +g ‘ 𝑅 ) 𝐵 ) ↔ ( 𝐴 ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑁 ‘ 𝐵 ) ) ) |
| 67 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ CRing ) |
| 68 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑁 ‘ 𝐵 ) / 𝐴 ) ∈ ( Base ‘ 𝑅 ) ) |
| 69 |
16 56 67 68 59
|
crngcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 𝑁 ‘ 𝐵 ) / 𝐴 ) ( .r ‘ 𝑅 ) 𝐴 ) = ( 𝐴 ( .r ‘ 𝑅 ) ( ( 𝑁 ‘ 𝐵 ) / 𝐴 ) ) ) |
| 70 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝐴 ∈ ( Unit ‘ 𝑅 ) ) |
| 71 |
16 42 10 56
|
dvrcan1 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 ‘ 𝐵 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝐴 ∈ ( Unit ‘ 𝑅 ) ) → ( ( ( 𝑁 ‘ 𝐵 ) / 𝐴 ) ( .r ‘ 𝑅 ) 𝐴 ) = ( 𝑁 ‘ 𝐵 ) ) |
| 72 |
57 62 70 71
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 𝑁 ‘ 𝐵 ) / 𝐴 ) ( .r ‘ 𝑅 ) 𝐴 ) = ( 𝑁 ‘ 𝐵 ) ) |
| 73 |
69 72
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐴 ( .r ‘ 𝑅 ) ( ( 𝑁 ‘ 𝐵 ) / 𝐴 ) ) = ( 𝑁 ‘ 𝐵 ) ) |
| 74 |
73
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐴 ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝐴 ( .r ‘ 𝑅 ) ( ( 𝑁 ‘ 𝐵 ) / 𝐴 ) ) ↔ ( 𝐴 ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑁 ‘ 𝐵 ) ) ) |
| 75 |
|
drngdomn |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Domn ) |
| 76 |
29 75
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
| 77 |
|
domnnzr |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) |
| 78 |
76 77
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
| 79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ NzRing ) |
| 80 |
42 5 79 70
|
unitnz |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝐴 ≠ 0 ) |
| 81 |
59 80
|
eldifsnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝐴 ∈ ( ( Base ‘ 𝑅 ) ∖ { 0 } ) ) |
| 82 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Domn ) |
| 83 |
16 5 56 81 60 68 82
|
domnlcanb |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐴 ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝐴 ( .r ‘ 𝑅 ) ( ( 𝑁 ‘ 𝐵 ) / 𝐴 ) ) ↔ 𝑥 = ( ( 𝑁 ‘ 𝐵 ) / 𝐴 ) ) ) |
| 84 |
66 74 83
|
3bitr2rd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 = ( ( 𝑁 ‘ 𝐵 ) / 𝐴 ) ↔ ( ( 𝐴 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) 𝐵 ) = ( ( 𝑁 ‘ 𝐵 ) ( +g ‘ 𝑅 ) 𝐵 ) ) ) |
| 85 |
16 64 5 9 55 63
|
grplinvd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑁 ‘ 𝐵 ) ( +g ‘ 𝑅 ) 𝐵 ) = 0 ) |
| 86 |
85
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 𝐴 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) 𝐵 ) = ( ( 𝑁 ‘ 𝐵 ) ( +g ‘ 𝑅 ) 𝐵 ) ↔ ( ( 𝐴 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) 𝐵 ) = 0 ) ) |
| 87 |
84 86
|
bitr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 𝐴 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) 𝐵 ) = 0 ↔ 𝑥 = ( ( 𝑁 ‘ 𝐵 ) / 𝐴 ) ) ) |
| 88 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝐺 ∈ 𝑈 ) |
| 89 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐷 ‘ 𝐺 ) = 1 ) |
| 90 |
1 3 16 2 56 64 11 4 12 13 67 88 89 60
|
evl1deg1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = ( ( 𝐴 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) 𝐵 ) ) |
| 91 |
90
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 0 ↔ ( ( 𝐴 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) 𝐵 ) = 0 ) ) |
| 92 |
14
|
eqeq2i |
⊢ ( 𝑥 = 𝑍 ↔ 𝑥 = ( ( 𝑁 ‘ 𝐵 ) / 𝐴 ) ) |
| 93 |
92
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 = 𝑍 ↔ 𝑥 = ( ( 𝑁 ‘ 𝐵 ) / 𝐴 ) ) ) |
| 94 |
87 91 93
|
3bitr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 0 ↔ 𝑥 = 𝑍 ) ) |
| 95 |
94
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = 𝑍 ) → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 0 ) |
| 96 |
54 95
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = 𝑍 ) → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑍 ) = 0 ) |
| 97 |
96
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 = 𝑍 → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑍 ) = 0 ) ) |
| 98 |
97
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( 𝑥 = 𝑍 → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑍 ) = 0 ) ) |
| 99 |
52 98 49
|
rspcdva |
⊢ ( 𝜑 → ( 𝑍 = 𝑍 → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑍 ) = 0 ) ) |
| 100 |
50 99
|
mpd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑍 ) = 0 ) |
| 101 |
94
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 0 ) → 𝑥 = 𝑍 ) |
| 102 |
21 49 100 101
|
rabeqsnd |
⊢ ( 𝜑 → { 𝑥 ∈ ( Base ‘ 𝑅 ) ∣ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑥 ) = 0 } = { 𝑍 } ) |
| 103 |
20 102
|
eqtrd |
⊢ ( 𝜑 → ( ◡ ( 𝑂 ‘ 𝐺 ) “ { 0 } ) = { 𝑍 } ) |