Metamath Proof Explorer


Theorem evl1fvf

Description: The univariate polynomial evaluation function as a function, with domain and codomain. (Contributed by Thierry Arnoux, 8-Jun-2025)

Ref Expression
Hypotheses evl1fvf.o 𝑂 = ( eval1𝑅 )
evl1fvf.p 𝑃 = ( Poly1𝑅 )
evl1fvf.u 𝑈 = ( Base ‘ 𝑃 )
evl1fvf.r ( 𝜑𝑅 ∈ CRing )
evl1fvf.b 𝐵 = ( Base ‘ 𝑅 )
evl1fvf.q ( 𝜑𝑄𝑈 )
Assertion evl1fvf ( 𝜑 → ( 𝑂𝑄 ) : 𝐵𝐵 )

Proof

Step Hyp Ref Expression
1 evl1fvf.o 𝑂 = ( eval1𝑅 )
2 evl1fvf.p 𝑃 = ( Poly1𝑅 )
3 evl1fvf.u 𝑈 = ( Base ‘ 𝑃 )
4 evl1fvf.r ( 𝜑𝑅 ∈ CRing )
5 evl1fvf.b 𝐵 = ( Base ‘ 𝑅 )
6 evl1fvf.q ( 𝜑𝑄𝑈 )
7 eqid ( 𝑅s 𝐵 ) = ( 𝑅s 𝐵 )
8 eqid ( Base ‘ ( 𝑅s 𝐵 ) ) = ( Base ‘ ( 𝑅s 𝐵 ) )
9 5 fvexi 𝐵 ∈ V
10 9 a1i ( 𝜑𝐵 ∈ V )
11 1 2 7 5 evl1rhm ( 𝑅 ∈ CRing → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅s 𝐵 ) ) )
12 3 8 rhmf ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅s 𝐵 ) ) → 𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅s 𝐵 ) ) )
13 4 11 12 3syl ( 𝜑𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅s 𝐵 ) ) )
14 13 6 ffvelcdmd ( 𝜑 → ( 𝑂𝑄 ) ∈ ( Base ‘ ( 𝑅s 𝐵 ) ) )
15 7 5 8 4 10 14 pwselbas ( 𝜑 → ( 𝑂𝑄 ) : 𝐵𝐵 )