Metamath Proof Explorer


Theorem evl1fvf

Description: The univariate polynomial evaluation function as a function, with domain and codomain. (Contributed by Thierry Arnoux, 8-Jun-2025)

Ref Expression
Hypotheses evl1fvf.o O = eval 1 R
evl1fvf.p P = Poly 1 R
evl1fvf.u U = Base P
evl1fvf.r φ R CRing
evl1fvf.b B = Base R
evl1fvf.q φ Q U
Assertion evl1fvf φ O Q : B B

Proof

Step Hyp Ref Expression
1 evl1fvf.o O = eval 1 R
2 evl1fvf.p P = Poly 1 R
3 evl1fvf.u U = Base P
4 evl1fvf.r φ R CRing
5 evl1fvf.b B = Base R
6 evl1fvf.q φ Q U
7 eqid R 𝑠 B = R 𝑠 B
8 eqid Base R 𝑠 B = Base R 𝑠 B
9 5 fvexi B V
10 9 a1i φ B V
11 1 2 7 5 evl1rhm R CRing O P RingHom R 𝑠 B
12 3 8 rhmf O P RingHom R 𝑠 B O : U Base R 𝑠 B
13 4 11 12 3syl φ O : U Base R 𝑠 B
14 13 6 ffvelcdmd φ O Q Base R 𝑠 B
15 7 5 8 4 10 14 pwselbas φ O Q : B B