Metamath Proof Explorer


Theorem evl1rhm

Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by Mario Carneiro, 12-Jun-2015) (Proof shortened by AV, 13-Sep-2019)

Ref Expression
Hypotheses evl1rhm.q O=eval1R
evl1rhm.w P=Poly1R
evl1rhm.t T=R𝑠B
evl1rhm.b B=BaseR
Assertion evl1rhm RCRingOPRingHomT

Proof

Step Hyp Ref Expression
1 evl1rhm.q O=eval1R
2 evl1rhm.w P=Poly1R
3 evl1rhm.t T=R𝑠B
4 evl1rhm.b B=BaseR
5 eqid 1𝑜evalR=1𝑜evalR
6 1 5 4 evl1fval O=xBB1𝑜xyB1𝑜×y1𝑜evalR
7 eqid xBB1𝑜xyB1𝑜×y=xBB1𝑜xyB1𝑜×y
8 4 3 7 evls1rhmlem RCRingxBB1𝑜xyB1𝑜×yR𝑠B1𝑜RingHomT
9 1on 1𝑜On
10 eqid 1𝑜mPolyR=1𝑜mPolyR
11 eqid R𝑠B1𝑜=R𝑠B1𝑜
12 5 4 10 11 evlrhm 1𝑜OnRCRing1𝑜evalR1𝑜mPolyRRingHomR𝑠B1𝑜
13 9 12 mpan RCRing1𝑜evalR1𝑜mPolyRRingHomR𝑠B1𝑜
14 eqidd RCRingBaseP=BaseP
15 eqidd RCRingBaseR𝑠B1𝑜=BaseR𝑠B1𝑜
16 eqid PwSer1R=PwSer1R
17 eqid BaseP=BaseP
18 2 16 17 ply1bas BaseP=Base1𝑜mPolyR
19 18 a1i RCRingBaseP=Base1𝑜mPolyR
20 eqid +P=+P
21 2 10 20 ply1plusg +P=+1𝑜mPolyR
22 21 a1i RCRing+P=+1𝑜mPolyR
23 22 oveqdr RCRingxBasePyBasePx+Py=x+1𝑜mPolyRy
24 eqidd RCRingxBaseR𝑠B1𝑜yBaseR𝑠B1𝑜x+R𝑠B1𝑜y=x+R𝑠B1𝑜y
25 eqid P=P
26 2 10 25 ply1mulr P=1𝑜mPolyR
27 26 a1i RCRingP=1𝑜mPolyR
28 27 oveqdr RCRingxBasePyBasePxPy=x1𝑜mPolyRy
29 eqidd RCRingxBaseR𝑠B1𝑜yBaseR𝑠B1𝑜xR𝑠B1𝑜y=xR𝑠B1𝑜y
30 14 15 19 15 23 24 28 29 rhmpropd RCRingPRingHomR𝑠B1𝑜=1𝑜mPolyRRingHomR𝑠B1𝑜
31 13 30 eleqtrrd RCRing1𝑜evalRPRingHomR𝑠B1𝑜
32 rhmco xBB1𝑜xyB1𝑜×yR𝑠B1𝑜RingHomT1𝑜evalRPRingHomR𝑠B1𝑜xBB1𝑜xyB1𝑜×y1𝑜evalRPRingHomT
33 8 31 32 syl2anc RCRingxBB1𝑜xyB1𝑜×y1𝑜evalRPRingHomT
34 6 33 eqeltrid RCRingOPRingHomT