Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by Mario Carneiro, 12-Jun-2015) (Proof shortened by AV, 13-Sep-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | evl1rhm.q | |
|
evl1rhm.w | |
||
evl1rhm.t | |
||
evl1rhm.b | |
||
Assertion | evl1rhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1rhm.q | |
|
2 | evl1rhm.w | |
|
3 | evl1rhm.t | |
|
4 | evl1rhm.b | |
|
5 | eqid | |
|
6 | 1 5 4 | evl1fval | |
7 | eqid | |
|
8 | 4 3 7 | evls1rhmlem | |
9 | 1on | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | 5 4 10 11 | evlrhm | |
13 | 9 12 | mpan | |
14 | eqidd | |
|
15 | eqidd | |
|
16 | eqid | |
|
17 | eqid | |
|
18 | 2 16 17 | ply1bas | |
19 | 18 | a1i | |
20 | eqid | |
|
21 | 2 10 20 | ply1plusg | |
22 | 21 | a1i | |
23 | 22 | oveqdr | |
24 | eqidd | |
|
25 | eqid | |
|
26 | 2 10 25 | ply1mulr | |
27 | 26 | a1i | |
28 | 27 | oveqdr | |
29 | eqidd | |
|
30 | 14 15 19 15 23 24 28 29 | rhmpropd | |
31 | 13 30 | eleqtrrd | |
32 | rhmco | |
|
33 | 8 31 32 | syl2anc | |
34 | 6 33 | eqeltrid | |