| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evl1rhm.q |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
| 2 |
|
evl1rhm.w |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 3 |
|
evl1rhm.t |
⊢ 𝑇 = ( 𝑅 ↑s 𝐵 ) |
| 4 |
|
evl1rhm.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 5 |
|
eqid |
⊢ ( 1o eval 𝑅 ) = ( 1o eval 𝑅 ) |
| 6 |
1 5 4
|
evl1fval |
⊢ 𝑂 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑅 ) ) |
| 7 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) = ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 8 |
4 3 7
|
evls1rhmlem |
⊢ ( 𝑅 ∈ CRing → ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∈ ( ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) RingHom 𝑇 ) ) |
| 9 |
|
1on |
⊢ 1o ∈ On |
| 10 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
| 11 |
|
eqid |
⊢ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) = ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) |
| 12 |
5 4 10 11
|
evlrhm |
⊢ ( ( 1o ∈ On ∧ 𝑅 ∈ CRing ) → ( 1o eval 𝑅 ) ∈ ( ( 1o mPoly 𝑅 ) RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 13 |
9 12
|
mpan |
⊢ ( 𝑅 ∈ CRing → ( 1o eval 𝑅 ) ∈ ( ( 1o mPoly 𝑅 ) RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 14 |
|
eqidd |
⊢ ( 𝑅 ∈ CRing → ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) ) |
| 15 |
|
eqidd |
⊢ ( 𝑅 ∈ CRing → ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) = ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 17 |
2 16
|
ply1bas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 18 |
17
|
a1i |
⊢ ( 𝑅 ∈ CRing → ( Base ‘ 𝑃 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
| 19 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 20 |
2 10 19
|
ply1plusg |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ ( 1o mPoly 𝑅 ) ) |
| 21 |
20
|
a1i |
⊢ ( 𝑅 ∈ CRing → ( +g ‘ 𝑃 ) = ( +g ‘ ( 1o mPoly 𝑅 ) ) ) |
| 22 |
21
|
oveqdr |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) → ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 1o mPoly 𝑅 ) ) 𝑦 ) ) |
| 23 |
|
eqidd |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑥 ∈ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) ) → ( 𝑥 ( +g ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) 𝑦 ) ) |
| 24 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 25 |
2 10 24
|
ply1mulr |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ ( 1o mPoly 𝑅 ) ) |
| 26 |
25
|
a1i |
⊢ ( 𝑅 ∈ CRing → ( .r ‘ 𝑃 ) = ( .r ‘ ( 1o mPoly 𝑅 ) ) ) |
| 27 |
26
|
oveqdr |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 1o mPoly 𝑅 ) ) 𝑦 ) ) |
| 28 |
|
eqidd |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑥 ∈ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) ) → ( 𝑥 ( .r ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) 𝑦 ) ) |
| 29 |
14 15 18 15 22 23 27 28
|
rhmpropd |
⊢ ( 𝑅 ∈ CRing → ( 𝑃 RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) = ( ( 1o mPoly 𝑅 ) RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 30 |
13 29
|
eleqtrrd |
⊢ ( 𝑅 ∈ CRing → ( 1o eval 𝑅 ) ∈ ( 𝑃 RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 31 |
|
rhmco |
⊢ ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∈ ( ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) RingHom 𝑇 ) ∧ ( 1o eval 𝑅 ) ∈ ( 𝑃 RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑅 ) ) ∈ ( 𝑃 RingHom 𝑇 ) ) |
| 32 |
8 30 31
|
syl2anc |
⊢ ( 𝑅 ∈ CRing → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑅 ) ) ∈ ( 𝑃 RingHom 𝑇 ) ) |
| 33 |
6 32
|
eqeltrid |
⊢ ( 𝑅 ∈ CRing → 𝑂 ∈ ( 𝑃 RingHom 𝑇 ) ) |