Step |
Hyp |
Ref |
Expression |
1 |
|
evl1fvf.o |
|- O = ( eval1 ` R ) |
2 |
|
evl1fvf.p |
|- P = ( Poly1 ` R ) |
3 |
|
evl1fvf.u |
|- U = ( Base ` P ) |
4 |
|
evl1fvf.r |
|- ( ph -> R e. CRing ) |
5 |
|
evl1fvf.b |
|- B = ( Base ` R ) |
6 |
|
evl1fvf.q |
|- ( ph -> Q e. U ) |
7 |
|
eqid |
|- ( R ^s B ) = ( R ^s B ) |
8 |
|
eqid |
|- ( Base ` ( R ^s B ) ) = ( Base ` ( R ^s B ) ) |
9 |
5
|
fvexi |
|- B e. _V |
10 |
9
|
a1i |
|- ( ph -> B e. _V ) |
11 |
1 2 7 5
|
evl1rhm |
|- ( R e. CRing -> O e. ( P RingHom ( R ^s B ) ) ) |
12 |
3 8
|
rhmf |
|- ( O e. ( P RingHom ( R ^s B ) ) -> O : U --> ( Base ` ( R ^s B ) ) ) |
13 |
4 11 12
|
3syl |
|- ( ph -> O : U --> ( Base ` ( R ^s B ) ) ) |
14 |
13 6
|
ffvelcdmd |
|- ( ph -> ( O ` Q ) e. ( Base ` ( R ^s B ) ) ) |
15 |
7 5 8 4 10 14
|
pwselbas |
|- ( ph -> ( O ` Q ) : B --> B ) |