Step |
Hyp |
Ref |
Expression |
1 |
|
evl1deg1.1 |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
evl1deg1.2 |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
3 |
|
evl1deg1.3 |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
4 |
|
evl1deg1.4 |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
5 |
|
evl1deg1.5 |
⊢ · = ( .r ‘ 𝑅 ) |
6 |
|
evl1deg1.6 |
⊢ + = ( +g ‘ 𝑅 ) |
7 |
|
evl1deg1.7 |
⊢ 𝐶 = ( coe1 ‘ 𝑀 ) |
8 |
|
evl1deg1.8 |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
9 |
|
evl1deg1.9 |
⊢ 𝐴 = ( 𝐶 ‘ 1 ) |
10 |
|
evl1deg1.10 |
⊢ 𝐵 = ( 𝐶 ‘ 0 ) |
11 |
|
evl1deg1.11 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
12 |
|
evl1deg1.12 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑈 ) |
13 |
|
evl1deg1.13 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑀 ) = 1 ) |
14 |
|
evl1deg1.14 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
15 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑥 ) = ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑥 ) ) = ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) |
17 |
16
|
mpteq2dv |
⊢ ( 𝑥 = 𝑋 → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑥 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) ) |
18 |
17
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑥 ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) ) ) |
19 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑅 ) ) = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) |
20 |
2 1 3 4 11 12 5 19 7
|
evl1fpws |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) = ( 𝑥 ∈ 𝐾 ↦ ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑥 ) ) ) ) ) ) |
21 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) ) ∈ V ) |
22 |
18 20 14 21
|
fvmptd4 |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑋 ) = ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) ) ) |
23 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
24 |
11
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
25 |
24
|
ringcmnd |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
26 |
|
nn0ex |
⊢ ℕ0 ∈ V |
27 |
26
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
28 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
29 |
7 4 1 3
|
coe1fvalcl |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 ‘ 𝑘 ) ∈ 𝐾 ) |
30 |
12 29
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 ‘ 𝑘 ) ∈ 𝐾 ) |
31 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
32 |
31 3
|
mgpbas |
⊢ 𝐾 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
33 |
31
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
34 |
24 33
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
36 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
37 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑋 ∈ 𝐾 ) |
38 |
32 19 35 36 37
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ∈ 𝐾 ) |
39 |
3 5 28 30 38
|
ringcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ∈ 𝐾 ) |
40 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ V ) |
41 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐶 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑗 ) ) |
42 |
|
oveq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) = ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) |
43 |
41 42
|
oveq12d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) = ( ( 𝐶 ‘ 𝑗 ) · ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) |
44 |
|
breq1 |
⊢ ( 𝑖 = ( 𝐷 ‘ 𝑀 ) → ( 𝑖 < 𝑗 ↔ ( 𝐷 ‘ 𝑀 ) < 𝑗 ) ) |
45 |
44
|
imbi1d |
⊢ ( 𝑖 = ( 𝐷 ‘ 𝑀 ) → ( ( 𝑖 < 𝑗 → ( ( 𝐶 ‘ 𝑗 ) · ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ↔ ( ( 𝐷 ‘ 𝑀 ) < 𝑗 → ( ( 𝐶 ‘ 𝑗 ) · ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
46 |
45
|
ralbidv |
⊢ ( 𝑖 = ( 𝐷 ‘ 𝑀 ) → ( ∀ 𝑗 ∈ ℕ0 ( 𝑖 < 𝑗 → ( ( 𝐶 ‘ 𝑗 ) · ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ↔ ∀ 𝑗 ∈ ℕ0 ( ( 𝐷 ‘ 𝑀 ) < 𝑗 → ( ( 𝐶 ‘ 𝑗 ) · ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
47 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
48 |
13 47
|
eqeltrdi |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑀 ) ∈ ℕ0 ) |
49 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐷 ‘ 𝑀 ) < 𝑗 ) → 𝑀 ∈ 𝑈 ) |
50 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐷 ‘ 𝑀 ) < 𝑗 ) → 𝑗 ∈ ℕ0 ) |
51 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐷 ‘ 𝑀 ) < 𝑗 ) → ( 𝐷 ‘ 𝑀 ) < 𝑗 ) |
52 |
8 1 4 23 7
|
deg1lt |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 𝑗 ∈ ℕ0 ∧ ( 𝐷 ‘ 𝑀 ) < 𝑗 ) → ( 𝐶 ‘ 𝑗 ) = ( 0g ‘ 𝑅 ) ) |
53 |
49 50 51 52
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐷 ‘ 𝑀 ) < 𝑗 ) → ( 𝐶 ‘ 𝑗 ) = ( 0g ‘ 𝑅 ) ) |
54 |
53
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐷 ‘ 𝑀 ) < 𝑗 ) → ( ( 𝐶 ‘ 𝑗 ) · ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) = ( ( 0g ‘ 𝑅 ) · ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) |
55 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐷 ‘ 𝑀 ) < 𝑗 ) → 𝑅 ∈ Ring ) |
56 |
55 33
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐷 ‘ 𝑀 ) < 𝑗 ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
57 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐷 ‘ 𝑀 ) < 𝑗 ) → 𝑋 ∈ 𝐾 ) |
58 |
32 19 56 50 57
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐷 ‘ 𝑀 ) < 𝑗 ) → ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ∈ 𝐾 ) |
59 |
3 5 23 55 58
|
ringlzd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐷 ‘ 𝑀 ) < 𝑗 ) → ( ( 0g ‘ 𝑅 ) · ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) |
60 |
54 59
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐷 ‘ 𝑀 ) < 𝑗 ) → ( ( 𝐶 ‘ 𝑗 ) · ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) |
61 |
60
|
ex |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐷 ‘ 𝑀 ) < 𝑗 → ( ( 𝐶 ‘ 𝑗 ) · ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ) |
62 |
61
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ℕ0 ( ( 𝐷 ‘ 𝑀 ) < 𝑗 → ( ( 𝐶 ‘ 𝑗 ) · ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ) |
63 |
46 48 62
|
rspcedvdw |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ℕ0 ∀ 𝑗 ∈ ℕ0 ( 𝑖 < 𝑗 → ( ( 𝐶 ‘ 𝑗 ) · ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ) |
64 |
40 39 43 63
|
mptnn0fsuppd |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
65 |
|
nn0disj01 |
⊢ ( { 0 , 1 } ∩ ( ℤ≥ ‘ 2 ) ) = ∅ |
66 |
65
|
a1i |
⊢ ( 𝜑 → ( { 0 , 1 } ∩ ( ℤ≥ ‘ 2 ) ) = ∅ ) |
67 |
|
nn0split01 |
⊢ ℕ0 = ( { 0 , 1 } ∪ ( ℤ≥ ‘ 2 ) ) |
68 |
67
|
a1i |
⊢ ( 𝜑 → ℕ0 = ( { 0 , 1 } ∪ ( ℤ≥ ‘ 2 ) ) ) |
69 |
3 23 6 25 27 39 64 66 68
|
gsumsplit2 |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) ) = ( ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 } ↦ ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) ) + ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ↦ ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) ) ) ) |
70 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
71 |
70
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
72 |
47
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
73 |
|
0ne1 |
⊢ 0 ≠ 1 |
74 |
73
|
a1i |
⊢ ( 𝜑 → 0 ≠ 1 ) |
75 |
7 4 1 3
|
coe1fvalcl |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 0 ∈ ℕ0 ) → ( 𝐶 ‘ 0 ) ∈ 𝐾 ) |
76 |
12 70 75
|
sylancl |
⊢ ( 𝜑 → ( 𝐶 ‘ 0 ) ∈ 𝐾 ) |
77 |
32 19 34 71 14
|
mulgnn0cld |
⊢ ( 𝜑 → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ∈ 𝐾 ) |
78 |
3 5 24 76 77
|
ringcld |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 0 ) · ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ∈ 𝐾 ) |
79 |
7 4 1 3
|
coe1fvalcl |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 1 ∈ ℕ0 ) → ( 𝐶 ‘ 1 ) ∈ 𝐾 ) |
80 |
12 47 79
|
sylancl |
⊢ ( 𝜑 → ( 𝐶 ‘ 1 ) ∈ 𝐾 ) |
81 |
32 19 34 72 14
|
mulgnn0cld |
⊢ ( 𝜑 → ( 1 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ∈ 𝐾 ) |
82 |
3 5 24 80 81
|
ringcld |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 1 ) · ( 1 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ∈ 𝐾 ) |
83 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( 𝐶 ‘ 𝑘 ) = ( 𝐶 ‘ 0 ) ) |
84 |
|
oveq1 |
⊢ ( 𝑘 = 0 → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) = ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) |
85 |
83 84
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) = ( ( 𝐶 ‘ 0 ) · ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) |
86 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( 𝐶 ‘ 𝑘 ) = ( 𝐶 ‘ 1 ) ) |
87 |
|
oveq1 |
⊢ ( 𝑘 = 1 → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) = ( 1 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) |
88 |
86 87
|
oveq12d |
⊢ ( 𝑘 = 1 → ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) = ( ( 𝐶 ‘ 1 ) · ( 1 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) |
89 |
3 6 85 88
|
gsumpr |
⊢ ( ( 𝑅 ∈ CMnd ∧ ( 0 ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ 0 ≠ 1 ) ∧ ( ( ( 𝐶 ‘ 0 ) · ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ∈ 𝐾 ∧ ( ( 𝐶 ‘ 1 ) · ( 1 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ∈ 𝐾 ) ) → ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 } ↦ ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) ) = ( ( ( 𝐶 ‘ 0 ) · ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) + ( ( 𝐶 ‘ 1 ) · ( 1 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) ) |
90 |
25 71 72 74 78 82 89
|
syl132anc |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 } ↦ ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) ) = ( ( ( 𝐶 ‘ 0 ) · ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) + ( ( 𝐶 ‘ 1 ) · ( 1 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) ) |
91 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑀 ∈ 𝑈 ) |
92 |
|
2eluzge0 |
⊢ 2 ∈ ( ℤ≥ ‘ 0 ) |
93 |
|
uzss |
⊢ ( 2 ∈ ( ℤ≥ ‘ 0 ) → ( ℤ≥ ‘ 2 ) ⊆ ( ℤ≥ ‘ 0 ) ) |
94 |
92 93
|
ax-mp |
⊢ ( ℤ≥ ‘ 2 ) ⊆ ( ℤ≥ ‘ 0 ) |
95 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
96 |
94 95
|
sseqtrri |
⊢ ( ℤ≥ ‘ 2 ) ⊆ ℕ0 |
97 |
96
|
a1i |
⊢ ( 𝜑 → ( ℤ≥ ‘ 2 ) ⊆ ℕ0 ) |
98 |
97
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑘 ∈ ℕ0 ) |
99 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐷 ‘ 𝑀 ) = 1 ) |
100 |
|
eluz2gt1 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑘 ) |
101 |
100
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → 1 < 𝑘 ) |
102 |
99 101
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐷 ‘ 𝑀 ) < 𝑘 ) |
103 |
8 1 4 23 7
|
deg1lt |
⊢ ( ( 𝑀 ∈ 𝑈 ∧ 𝑘 ∈ ℕ0 ∧ ( 𝐷 ‘ 𝑀 ) < 𝑘 ) → ( 𝐶 ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) |
104 |
91 98 102 103
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐶 ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) |
105 |
104
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) = ( ( 0g ‘ 𝑅 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) |
106 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑅 ∈ Ring ) |
107 |
106 33
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
108 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑋 ∈ 𝐾 ) |
109 |
32 19 107 98 108
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ∈ 𝐾 ) |
110 |
3 5 23 106 109
|
ringlzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 0g ‘ 𝑅 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) |
111 |
105 110
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) |
112 |
111
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ↦ ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) = ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ↦ ( 0g ‘ 𝑅 ) ) ) |
113 |
112
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ↦ ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ↦ ( 0g ‘ 𝑅 ) ) ) ) |
114 |
90 113
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 } ↦ ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) ) + ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ↦ ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) ) ) = ( ( ( ( 𝐶 ‘ 0 ) · ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) + ( ( 𝐶 ‘ 1 ) · ( 1 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) + ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ↦ ( 0g ‘ 𝑅 ) ) ) ) ) |
115 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
116 |
10 76
|
eqeltrid |
⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) |
117 |
3 5 115 24 116
|
ringridmd |
⊢ ( 𝜑 → ( 𝐵 · ( 1r ‘ 𝑅 ) ) = 𝐵 ) |
118 |
117
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐵 · ( 1r ‘ 𝑅 ) ) + ( 𝐴 · 𝑋 ) ) = ( 𝐵 + ( 𝐴 · 𝑋 ) ) ) |
119 |
10
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( 𝐶 ‘ 0 ) ) |
120 |
31 115
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
121 |
32 120 19
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐾 → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
122 |
14 121
|
syl |
⊢ ( 𝜑 → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
123 |
122
|
eqcomd |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) |
124 |
119 123
|
oveq12d |
⊢ ( 𝜑 → ( 𝐵 · ( 1r ‘ 𝑅 ) ) = ( ( 𝐶 ‘ 0 ) · ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) |
125 |
9
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( 𝐶 ‘ 1 ) ) |
126 |
32 19
|
mulg1 |
⊢ ( 𝑋 ∈ 𝐾 → ( 1 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) = 𝑋 ) |
127 |
14 126
|
syl |
⊢ ( 𝜑 → ( 1 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) = 𝑋 ) |
128 |
127
|
eqcomd |
⊢ ( 𝜑 → 𝑋 = ( 1 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) |
129 |
125 128
|
oveq12d |
⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) = ( ( 𝐶 ‘ 1 ) · ( 1 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) |
130 |
124 129
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐵 · ( 1r ‘ 𝑅 ) ) + ( 𝐴 · 𝑋 ) ) = ( ( ( 𝐶 ‘ 0 ) · ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) + ( ( 𝐶 ‘ 1 ) · ( 1 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) ) |
131 |
9 80
|
eqeltrid |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
132 |
3 5 24 131 14
|
ringcld |
⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ 𝐾 ) |
133 |
3 6
|
ringcom |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐵 ∈ 𝐾 ∧ ( 𝐴 · 𝑋 ) ∈ 𝐾 ) → ( 𝐵 + ( 𝐴 · 𝑋 ) ) = ( ( 𝐴 · 𝑋 ) + 𝐵 ) ) |
134 |
24 116 132 133
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 + ( 𝐴 · 𝑋 ) ) = ( ( 𝐴 · 𝑋 ) + 𝐵 ) ) |
135 |
118 130 134
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝐶 ‘ 0 ) · ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) + ( ( 𝐶 ‘ 1 ) · ( 1 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) = ( ( 𝐴 · 𝑋 ) + 𝐵 ) ) |
136 |
11
|
crnggrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
137 |
136
|
grpmndd |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
138 |
|
fvexd |
⊢ ( 𝜑 → ( ℤ≥ ‘ 2 ) ∈ V ) |
139 |
23
|
gsumz |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( ℤ≥ ‘ 2 ) ∈ V ) → ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ↦ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
140 |
137 138 139
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ↦ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
141 |
135 140
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( 𝐶 ‘ 0 ) · ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) + ( ( 𝐶 ‘ 1 ) · ( 1 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) + ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ↦ ( 0g ‘ 𝑅 ) ) ) ) = ( ( ( 𝐴 · 𝑋 ) + 𝐵 ) + ( 0g ‘ 𝑅 ) ) ) |
142 |
3 6 136 132 116
|
grpcld |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) + 𝐵 ) ∈ 𝐾 ) |
143 |
3 6 23 136 142
|
grpridd |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) + 𝐵 ) + ( 0g ‘ 𝑅 ) ) = ( ( 𝐴 · 𝑋 ) + 𝐵 ) ) |
144 |
114 141 143
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑅 Σg ( 𝑘 ∈ { 0 , 1 } ↦ ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) ) + ( 𝑅 Σg ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ↦ ( ( 𝐶 ‘ 𝑘 ) · ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑋 ) ) ) ) ) = ( ( 𝐴 · 𝑋 ) + 𝐵 ) ) |
145 |
22 69 144
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑋 ) = ( ( 𝐴 · 𝑋 ) + 𝐵 ) ) |