Description: Split 0 and 1 from the nonnegative integers. (Contributed by Thierry Arnoux, 8-Jun-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | nn0split01 | ⊢ ℕ0 = ( { 0 , 1 } ∪ ( ℤ≥ ‘ 2 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
2 | 2eluzge0 | ⊢ 2 ∈ ( ℤ≥ ‘ 0 ) | |
3 | fzouzsplit | ⊢ ( 2 ∈ ( ℤ≥ ‘ 0 ) → ( ℤ≥ ‘ 0 ) = ( ( 0 ..^ 2 ) ∪ ( ℤ≥ ‘ 2 ) ) ) | |
4 | 2 3 | ax-mp | ⊢ ( ℤ≥ ‘ 0 ) = ( ( 0 ..^ 2 ) ∪ ( ℤ≥ ‘ 2 ) ) |
5 | fzo0to2pr | ⊢ ( 0 ..^ 2 ) = { 0 , 1 } | |
6 | 5 | uneq1i | ⊢ ( ( 0 ..^ 2 ) ∪ ( ℤ≥ ‘ 2 ) ) = ( { 0 , 1 } ∪ ( ℤ≥ ‘ 2 ) ) |
7 | 1 4 6 | 3eqtri | ⊢ ℕ0 = ( { 0 , 1 } ∪ ( ℤ≥ ‘ 2 ) ) |