Metamath Proof Explorer


Theorem nn0split01

Description: Split 0 and 1 from the nonnegative integers. (Contributed by Thierry Arnoux, 8-Jun-2025)

Ref Expression
Assertion nn0split01 0 = ( { 0 , 1 } ∪ ( ℤ ‘ 2 ) )

Proof

Step Hyp Ref Expression
1 nn0uz 0 = ( ℤ ‘ 0 )
2 2eluzge0 2 ∈ ( ℤ ‘ 0 )
3 fzouzsplit ( 2 ∈ ( ℤ ‘ 0 ) → ( ℤ ‘ 0 ) = ( ( 0 ..^ 2 ) ∪ ( ℤ ‘ 2 ) ) )
4 2 3 ax-mp ( ℤ ‘ 0 ) = ( ( 0 ..^ 2 ) ∪ ( ℤ ‘ 2 ) )
5 fzo0to2pr ( 0 ..^ 2 ) = { 0 , 1 }
6 5 uneq1i ( ( 0 ..^ 2 ) ∪ ( ℤ ‘ 2 ) ) = ( { 0 , 1 } ∪ ( ℤ ‘ 2 ) )
7 1 4 6 3eqtri 0 = ( { 0 , 1 } ∪ ( ℤ ‘ 2 ) )