Metamath Proof Explorer


Theorem nn0split01

Description: Split 0 and 1 from the nonnegative integers. (Contributed by Thierry Arnoux, 8-Jun-2025)

Ref Expression
Assertion nn0split01 0 = 0 1 2

Proof

Step Hyp Ref Expression
1 nn0uz 0 = 0
2 2eluzge0 2 0
3 fzouzsplit 2 0 0 = 0 ..^ 2 2
4 2 3 ax-mp 0 = 0 ..^ 2 2
5 fzo0to2pr 0 ..^ 2 = 0 1
6 5 uneq1i 0 ..^ 2 2 = 0 1 2
7 1 4 6 3eqtri 0 = 0 1 2