Metamath Proof Explorer


Theorem fzouzsplit

Description: Split an upper integer set into a half-open integer range and another upper integer set. (Contributed by Mario Carneiro, 21-Sep-2016)

Ref Expression
Assertion fzouzsplit BAA=A..^BB

Proof

Step Hyp Ref Expression
1 eluzelre BAB
2 eluzelre xAx
3 lelttric BxBxx<B
4 1 2 3 syl2an BAxABxx<B
5 4 orcomd BAxAx<BBx
6 id xAxA
7 eluzelz BAB
8 elfzo2 xA..^BxABx<B
9 df-3an xABx<BxABx<B
10 8 9 bitri xA..^BxABx<B
11 10 baib xABxA..^Bx<B
12 6 7 11 syl2anr BAxAxA..^Bx<B
13 eluzelz xAx
14 eluz BxxBBx
15 7 13 14 syl2an BAxAxBBx
16 12 15 orbi12d BAxAxA..^BxBx<BBx
17 5 16 mpbird BAxAxA..^BxB
18 17 ex BAxAxA..^BxB
19 elun xA..^BBxA..^BxB
20 18 19 syl6ibr BAxAxA..^BB
21 20 ssrdv BAAA..^BB
22 elfzouz xA..^BxA
23 22 ssriv A..^BA
24 23 a1i BAA..^BA
25 uzss BABA
26 24 25 unssd BAA..^BBA
27 21 26 eqssd BAA=A..^BB