Metamath Proof Explorer


Theorem fzouzdisj

Description: A half-open integer range does not overlap the upper integer range starting at the endpoint of the first range. (Contributed by Mario Carneiro, 21-Sep-2016)

Ref Expression
Assertion fzouzdisj A..^BB=

Proof

Step Hyp Ref Expression
1 elfzolt2 xA..^Bx<B
2 1 adantr xA..^BxBx<B
3 eluzel2 xBB
4 3 adantl xA..^BxBB
5 4 zred xA..^BxBB
6 eluzelre xBx
7 6 adantl xA..^BxBx
8 eluzle xBBx
9 8 adantl xA..^BxBBx
10 5 7 9 lensymd xA..^BxB¬x<B
11 2 10 pm2.65i ¬xA..^BxB
12 elin xA..^BBxA..^BxB
13 11 12 mtbir ¬xA..^BB
14 13 nel0 A..^BB=