Metamath Proof Explorer


Theorem fzoun

Description: A half-open integer range as union of two half-open integer ranges. (Contributed by AV, 23-Apr-2022)

Ref Expression
Assertion fzoun BAC0A..^B+C=A..^BB..^B+C

Proof

Step Hyp Ref Expression
1 eluzel2 BAA
2 1 adantr BAC0A
3 eluzelz BAB
4 nn0z C0C
5 zaddcl BCB+C
6 3 4 5 syl2an BAC0B+C
7 3 adantr BAC0B
8 eluzle BAAB
9 8 adantr BAC0AB
10 nn0ge0 C00C
11 10 adantl BAC00C
12 eluzelre BAB
13 nn0re C0C
14 addge01 BC0CBB+C
15 12 13 14 syl2an BAC00CBB+C
16 11 15 mpbid BAC0BB+C
17 2 6 7 9 16 elfzd BAC0BAB+C
18 fzosplit BAB+CA..^B+C=A..^BB..^B+C
19 17 18 syl BAC0A..^B+C=A..^BB..^B+C