Step |
Hyp |
Ref |
Expression |
1 |
|
eluzel2 |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) |
2 |
1
|
adantr |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℕ0 ) → 𝐴 ∈ ℤ ) |
3 |
|
eluzelz |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℤ ) |
4 |
|
nn0z |
⊢ ( 𝐶 ∈ ℕ0 → 𝐶 ∈ ℤ ) |
5 |
|
zaddcl |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 + 𝐶 ) ∈ ℤ ) |
6 |
3 4 5
|
syl2an |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℕ0 ) → ( 𝐵 + 𝐶 ) ∈ ℤ ) |
7 |
3
|
adantr |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℕ0 ) → 𝐵 ∈ ℤ ) |
8 |
|
eluzle |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐴 ≤ 𝐵 ) |
9 |
8
|
adantr |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℕ0 ) → 𝐴 ≤ 𝐵 ) |
10 |
|
nn0ge0 |
⊢ ( 𝐶 ∈ ℕ0 → 0 ≤ 𝐶 ) |
11 |
10
|
adantl |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℕ0 ) → 0 ≤ 𝐶 ) |
12 |
|
eluzelre |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℝ ) |
13 |
|
nn0re |
⊢ ( 𝐶 ∈ ℕ0 → 𝐶 ∈ ℝ ) |
14 |
|
addge01 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 0 ≤ 𝐶 ↔ 𝐵 ≤ ( 𝐵 + 𝐶 ) ) ) |
15 |
12 13 14
|
syl2an |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℕ0 ) → ( 0 ≤ 𝐶 ↔ 𝐵 ≤ ( 𝐵 + 𝐶 ) ) ) |
16 |
11 15
|
mpbid |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℕ0 ) → 𝐵 ≤ ( 𝐵 + 𝐶 ) ) |
17 |
2 6 7 9 16
|
elfzd |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℕ0 ) → 𝐵 ∈ ( 𝐴 ... ( 𝐵 + 𝐶 ) ) ) |
18 |
|
fzosplit |
⊢ ( 𝐵 ∈ ( 𝐴 ... ( 𝐵 + 𝐶 ) ) → ( 𝐴 ..^ ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 ..^ 𝐵 ) ∪ ( 𝐵 ..^ ( 𝐵 + 𝐶 ) ) ) ) |
19 |
17 18
|
syl |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 ..^ ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 ..^ 𝐵 ) ∪ ( 𝐵 ..^ ( 𝐵 + 𝐶 ) ) ) ) |