| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							0re | 
							⊢ 0  ∈  ℝ  | 
						
						
							| 2 | 
							
								
							 | 
							leadd2 | 
							⊢ ( ( 0  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 0  ≤  𝐵  ↔  ( 𝐴  +  0 )  ≤  ( 𝐴  +  𝐵 ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							mp3an1 | 
							⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 0  ≤  𝐵  ↔  ( 𝐴  +  0 )  ≤  ( 𝐴  +  𝐵 ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							ancoms | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 0  ≤  𝐵  ↔  ( 𝐴  +  0 )  ≤  ( 𝐴  +  𝐵 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							recn | 
							⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ )  | 
						
						
							| 6 | 
							
								5
							 | 
							addridd | 
							⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  +  0 )  =  𝐴 )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  +  0 )  =  𝐴 )  | 
						
						
							| 8 | 
							
								7
							 | 
							breq1d | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐴  +  0 )  ≤  ( 𝐴  +  𝐵 )  ↔  𝐴  ≤  ( 𝐴  +  𝐵 ) ) )  | 
						
						
							| 9 | 
							
								4 8
							 | 
							bitrd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 0  ≤  𝐵  ↔  𝐴  ≤  ( 𝐴  +  𝐵 ) ) )  |