| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐷  ∈  ( 𝐵 ... 𝐶 )  ∧  𝑥  ∈  ( 𝐵 ..^ 𝐶 ) )  →  𝑥  ∈  ( 𝐵 ..^ 𝐶 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							elfzelz | 
							⊢ ( 𝐷  ∈  ( 𝐵 ... 𝐶 )  →  𝐷  ∈  ℤ )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝐷  ∈  ( 𝐵 ... 𝐶 )  ∧  𝑥  ∈  ( 𝐵 ..^ 𝐶 ) )  →  𝐷  ∈  ℤ )  | 
						
						
							| 4 | 
							
								
							 | 
							fzospliti | 
							⊢ ( ( 𝑥  ∈  ( 𝐵 ..^ 𝐶 )  ∧  𝐷  ∈  ℤ )  →  ( 𝑥  ∈  ( 𝐵 ..^ 𝐷 )  ∨  𝑥  ∈  ( 𝐷 ..^ 𝐶 ) ) )  | 
						
						
							| 5 | 
							
								1 3 4
							 | 
							syl2anc | 
							⊢ ( ( 𝐷  ∈  ( 𝐵 ... 𝐶 )  ∧  𝑥  ∈  ( 𝐵 ..^ 𝐶 ) )  →  ( 𝑥  ∈  ( 𝐵 ..^ 𝐷 )  ∨  𝑥  ∈  ( 𝐷 ..^ 𝐶 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							elun | 
							⊢ ( 𝑥  ∈  ( ( 𝐵 ..^ 𝐷 )  ∪  ( 𝐷 ..^ 𝐶 ) )  ↔  ( 𝑥  ∈  ( 𝐵 ..^ 𝐷 )  ∨  𝑥  ∈  ( 𝐷 ..^ 𝐶 ) ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							sylibr | 
							⊢ ( ( 𝐷  ∈  ( 𝐵 ... 𝐶 )  ∧  𝑥  ∈  ( 𝐵 ..^ 𝐶 ) )  →  𝑥  ∈  ( ( 𝐵 ..^ 𝐷 )  ∪  ( 𝐷 ..^ 𝐶 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							ex | 
							⊢ ( 𝐷  ∈  ( 𝐵 ... 𝐶 )  →  ( 𝑥  ∈  ( 𝐵 ..^ 𝐶 )  →  𝑥  ∈  ( ( 𝐵 ..^ 𝐷 )  ∪  ( 𝐷 ..^ 𝐶 ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							ssrdv | 
							⊢ ( 𝐷  ∈  ( 𝐵 ... 𝐶 )  →  ( 𝐵 ..^ 𝐶 )  ⊆  ( ( 𝐵 ..^ 𝐷 )  ∪  ( 𝐷 ..^ 𝐶 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							elfzuz3 | 
							⊢ ( 𝐷  ∈  ( 𝐵 ... 𝐶 )  →  𝐶  ∈  ( ℤ≥ ‘ 𝐷 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							fzoss2 | 
							⊢ ( 𝐶  ∈  ( ℤ≥ ‘ 𝐷 )  →  ( 𝐵 ..^ 𝐷 )  ⊆  ( 𝐵 ..^ 𝐶 ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							syl | 
							⊢ ( 𝐷  ∈  ( 𝐵 ... 𝐶 )  →  ( 𝐵 ..^ 𝐷 )  ⊆  ( 𝐵 ..^ 𝐶 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							elfzuz | 
							⊢ ( 𝐷  ∈  ( 𝐵 ... 𝐶 )  →  𝐷  ∈  ( ℤ≥ ‘ 𝐵 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							fzoss1 | 
							⊢ ( 𝐷  ∈  ( ℤ≥ ‘ 𝐵 )  →  ( 𝐷 ..^ 𝐶 )  ⊆  ( 𝐵 ..^ 𝐶 ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							syl | 
							⊢ ( 𝐷  ∈  ( 𝐵 ... 𝐶 )  →  ( 𝐷 ..^ 𝐶 )  ⊆  ( 𝐵 ..^ 𝐶 ) )  | 
						
						
							| 16 | 
							
								12 15
							 | 
							unssd | 
							⊢ ( 𝐷  ∈  ( 𝐵 ... 𝐶 )  →  ( ( 𝐵 ..^ 𝐷 )  ∪  ( 𝐷 ..^ 𝐶 ) )  ⊆  ( 𝐵 ..^ 𝐶 ) )  | 
						
						
							| 17 | 
							
								9 16
							 | 
							eqssd | 
							⊢ ( 𝐷  ∈  ( 𝐵 ... 𝐶 )  →  ( 𝐵 ..^ 𝐶 )  =  ( ( 𝐵 ..^ 𝐷 )  ∪  ( 𝐷 ..^ 𝐶 ) ) )  |