Step |
Hyp |
Ref |
Expression |
1 |
|
evl1deg1.1 |
|- P = ( Poly1 ` R ) |
2 |
|
evl1deg1.2 |
|- O = ( eval1 ` R ) |
3 |
|
evl1deg1.3 |
|- K = ( Base ` R ) |
4 |
|
evl1deg1.4 |
|- U = ( Base ` P ) |
5 |
|
evl1deg1.5 |
|- .x. = ( .r ` R ) |
6 |
|
evl1deg1.6 |
|- .+ = ( +g ` R ) |
7 |
|
evl1deg1.7 |
|- C = ( coe1 ` M ) |
8 |
|
evl1deg1.8 |
|- D = ( deg1 ` R ) |
9 |
|
evl1deg1.9 |
|- A = ( C ` 1 ) |
10 |
|
evl1deg1.10 |
|- B = ( C ` 0 ) |
11 |
|
evl1deg1.11 |
|- ( ph -> R e. CRing ) |
12 |
|
evl1deg1.12 |
|- ( ph -> M e. U ) |
13 |
|
evl1deg1.13 |
|- ( ph -> ( D ` M ) = 1 ) |
14 |
|
evl1deg1.14 |
|- ( ph -> X e. K ) |
15 |
|
oveq2 |
|- ( x = X -> ( k ( .g ` ( mulGrp ` R ) ) x ) = ( k ( .g ` ( mulGrp ` R ) ) X ) ) |
16 |
15
|
oveq2d |
|- ( x = X -> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) x ) ) = ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) X ) ) ) |
17 |
16
|
mpteq2dv |
|- ( x = X -> ( k e. NN0 |-> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) x ) ) ) = ( k e. NN0 |-> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) X ) ) ) ) |
18 |
17
|
oveq2d |
|- ( x = X -> ( R gsum ( k e. NN0 |-> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) x ) ) ) ) = ( R gsum ( k e. NN0 |-> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) X ) ) ) ) ) |
19 |
|
eqid |
|- ( .g ` ( mulGrp ` R ) ) = ( .g ` ( mulGrp ` R ) ) |
20 |
2 1 3 4 11 12 5 19 7
|
evl1fpws |
|- ( ph -> ( O ` M ) = ( x e. K |-> ( R gsum ( k e. NN0 |-> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) x ) ) ) ) ) ) |
21 |
|
ovexd |
|- ( ph -> ( R gsum ( k e. NN0 |-> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) X ) ) ) ) e. _V ) |
22 |
18 20 14 21
|
fvmptd4 |
|- ( ph -> ( ( O ` M ) ` X ) = ( R gsum ( k e. NN0 |-> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) X ) ) ) ) ) |
23 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
24 |
11
|
crngringd |
|- ( ph -> R e. Ring ) |
25 |
24
|
ringcmnd |
|- ( ph -> R e. CMnd ) |
26 |
|
nn0ex |
|- NN0 e. _V |
27 |
26
|
a1i |
|- ( ph -> NN0 e. _V ) |
28 |
24
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> R e. Ring ) |
29 |
7 4 1 3
|
coe1fvalcl |
|- ( ( M e. U /\ k e. NN0 ) -> ( C ` k ) e. K ) |
30 |
12 29
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( C ` k ) e. K ) |
31 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
32 |
31 3
|
mgpbas |
|- K = ( Base ` ( mulGrp ` R ) ) |
33 |
31
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
34 |
24 33
|
syl |
|- ( ph -> ( mulGrp ` R ) e. Mnd ) |
35 |
34
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> ( mulGrp ` R ) e. Mnd ) |
36 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
37 |
14
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> X e. K ) |
38 |
32 19 35 36 37
|
mulgnn0cld |
|- ( ( ph /\ k e. NN0 ) -> ( k ( .g ` ( mulGrp ` R ) ) X ) e. K ) |
39 |
3 5 28 30 38
|
ringcld |
|- ( ( ph /\ k e. NN0 ) -> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) X ) ) e. K ) |
40 |
|
fvexd |
|- ( ph -> ( 0g ` R ) e. _V ) |
41 |
|
fveq2 |
|- ( k = j -> ( C ` k ) = ( C ` j ) ) |
42 |
|
oveq1 |
|- ( k = j -> ( k ( .g ` ( mulGrp ` R ) ) X ) = ( j ( .g ` ( mulGrp ` R ) ) X ) ) |
43 |
41 42
|
oveq12d |
|- ( k = j -> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) X ) ) = ( ( C ` j ) .x. ( j ( .g ` ( mulGrp ` R ) ) X ) ) ) |
44 |
|
breq1 |
|- ( i = ( D ` M ) -> ( i < j <-> ( D ` M ) < j ) ) |
45 |
44
|
imbi1d |
|- ( i = ( D ` M ) -> ( ( i < j -> ( ( C ` j ) .x. ( j ( .g ` ( mulGrp ` R ) ) X ) ) = ( 0g ` R ) ) <-> ( ( D ` M ) < j -> ( ( C ` j ) .x. ( j ( .g ` ( mulGrp ` R ) ) X ) ) = ( 0g ` R ) ) ) ) |
46 |
45
|
ralbidv |
|- ( i = ( D ` M ) -> ( A. j e. NN0 ( i < j -> ( ( C ` j ) .x. ( j ( .g ` ( mulGrp ` R ) ) X ) ) = ( 0g ` R ) ) <-> A. j e. NN0 ( ( D ` M ) < j -> ( ( C ` j ) .x. ( j ( .g ` ( mulGrp ` R ) ) X ) ) = ( 0g ` R ) ) ) ) |
47 |
|
1nn0 |
|- 1 e. NN0 |
48 |
13 47
|
eqeltrdi |
|- ( ph -> ( D ` M ) e. NN0 ) |
49 |
12
|
ad2antrr |
|- ( ( ( ph /\ j e. NN0 ) /\ ( D ` M ) < j ) -> M e. U ) |
50 |
|
simplr |
|- ( ( ( ph /\ j e. NN0 ) /\ ( D ` M ) < j ) -> j e. NN0 ) |
51 |
|
simpr |
|- ( ( ( ph /\ j e. NN0 ) /\ ( D ` M ) < j ) -> ( D ` M ) < j ) |
52 |
8 1 4 23 7
|
deg1lt |
|- ( ( M e. U /\ j e. NN0 /\ ( D ` M ) < j ) -> ( C ` j ) = ( 0g ` R ) ) |
53 |
49 50 51 52
|
syl3anc |
|- ( ( ( ph /\ j e. NN0 ) /\ ( D ` M ) < j ) -> ( C ` j ) = ( 0g ` R ) ) |
54 |
53
|
oveq1d |
|- ( ( ( ph /\ j e. NN0 ) /\ ( D ` M ) < j ) -> ( ( C ` j ) .x. ( j ( .g ` ( mulGrp ` R ) ) X ) ) = ( ( 0g ` R ) .x. ( j ( .g ` ( mulGrp ` R ) ) X ) ) ) |
55 |
24
|
ad2antrr |
|- ( ( ( ph /\ j e. NN0 ) /\ ( D ` M ) < j ) -> R e. Ring ) |
56 |
55 33
|
syl |
|- ( ( ( ph /\ j e. NN0 ) /\ ( D ` M ) < j ) -> ( mulGrp ` R ) e. Mnd ) |
57 |
14
|
ad2antrr |
|- ( ( ( ph /\ j e. NN0 ) /\ ( D ` M ) < j ) -> X e. K ) |
58 |
32 19 56 50 57
|
mulgnn0cld |
|- ( ( ( ph /\ j e. NN0 ) /\ ( D ` M ) < j ) -> ( j ( .g ` ( mulGrp ` R ) ) X ) e. K ) |
59 |
3 5 23 55 58
|
ringlzd |
|- ( ( ( ph /\ j e. NN0 ) /\ ( D ` M ) < j ) -> ( ( 0g ` R ) .x. ( j ( .g ` ( mulGrp ` R ) ) X ) ) = ( 0g ` R ) ) |
60 |
54 59
|
eqtrd |
|- ( ( ( ph /\ j e. NN0 ) /\ ( D ` M ) < j ) -> ( ( C ` j ) .x. ( j ( .g ` ( mulGrp ` R ) ) X ) ) = ( 0g ` R ) ) |
61 |
60
|
ex |
|- ( ( ph /\ j e. NN0 ) -> ( ( D ` M ) < j -> ( ( C ` j ) .x. ( j ( .g ` ( mulGrp ` R ) ) X ) ) = ( 0g ` R ) ) ) |
62 |
61
|
ralrimiva |
|- ( ph -> A. j e. NN0 ( ( D ` M ) < j -> ( ( C ` j ) .x. ( j ( .g ` ( mulGrp ` R ) ) X ) ) = ( 0g ` R ) ) ) |
63 |
46 48 62
|
rspcedvdw |
|- ( ph -> E. i e. NN0 A. j e. NN0 ( i < j -> ( ( C ` j ) .x. ( j ( .g ` ( mulGrp ` R ) ) X ) ) = ( 0g ` R ) ) ) |
64 |
40 39 43 63
|
mptnn0fsuppd |
|- ( ph -> ( k e. NN0 |-> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) X ) ) ) finSupp ( 0g ` R ) ) |
65 |
|
nn0disj01 |
|- ( { 0 , 1 } i^i ( ZZ>= ` 2 ) ) = (/) |
66 |
65
|
a1i |
|- ( ph -> ( { 0 , 1 } i^i ( ZZ>= ` 2 ) ) = (/) ) |
67 |
|
nn0split01 |
|- NN0 = ( { 0 , 1 } u. ( ZZ>= ` 2 ) ) |
68 |
67
|
a1i |
|- ( ph -> NN0 = ( { 0 , 1 } u. ( ZZ>= ` 2 ) ) ) |
69 |
3 23 6 25 27 39 64 66 68
|
gsumsplit2 |
|- ( ph -> ( R gsum ( k e. NN0 |-> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) X ) ) ) ) = ( ( R gsum ( k e. { 0 , 1 } |-> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) X ) ) ) ) .+ ( R gsum ( k e. ( ZZ>= ` 2 ) |-> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) X ) ) ) ) ) ) |
70 |
|
0nn0 |
|- 0 e. NN0 |
71 |
70
|
a1i |
|- ( ph -> 0 e. NN0 ) |
72 |
47
|
a1i |
|- ( ph -> 1 e. NN0 ) |
73 |
|
0ne1 |
|- 0 =/= 1 |
74 |
73
|
a1i |
|- ( ph -> 0 =/= 1 ) |
75 |
7 4 1 3
|
coe1fvalcl |
|- ( ( M e. U /\ 0 e. NN0 ) -> ( C ` 0 ) e. K ) |
76 |
12 70 75
|
sylancl |
|- ( ph -> ( C ` 0 ) e. K ) |
77 |
32 19 34 71 14
|
mulgnn0cld |
|- ( ph -> ( 0 ( .g ` ( mulGrp ` R ) ) X ) e. K ) |
78 |
3 5 24 76 77
|
ringcld |
|- ( ph -> ( ( C ` 0 ) .x. ( 0 ( .g ` ( mulGrp ` R ) ) X ) ) e. K ) |
79 |
7 4 1 3
|
coe1fvalcl |
|- ( ( M e. U /\ 1 e. NN0 ) -> ( C ` 1 ) e. K ) |
80 |
12 47 79
|
sylancl |
|- ( ph -> ( C ` 1 ) e. K ) |
81 |
32 19 34 72 14
|
mulgnn0cld |
|- ( ph -> ( 1 ( .g ` ( mulGrp ` R ) ) X ) e. K ) |
82 |
3 5 24 80 81
|
ringcld |
|- ( ph -> ( ( C ` 1 ) .x. ( 1 ( .g ` ( mulGrp ` R ) ) X ) ) e. K ) |
83 |
|
fveq2 |
|- ( k = 0 -> ( C ` k ) = ( C ` 0 ) ) |
84 |
|
oveq1 |
|- ( k = 0 -> ( k ( .g ` ( mulGrp ` R ) ) X ) = ( 0 ( .g ` ( mulGrp ` R ) ) X ) ) |
85 |
83 84
|
oveq12d |
|- ( k = 0 -> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) X ) ) = ( ( C ` 0 ) .x. ( 0 ( .g ` ( mulGrp ` R ) ) X ) ) ) |
86 |
|
fveq2 |
|- ( k = 1 -> ( C ` k ) = ( C ` 1 ) ) |
87 |
|
oveq1 |
|- ( k = 1 -> ( k ( .g ` ( mulGrp ` R ) ) X ) = ( 1 ( .g ` ( mulGrp ` R ) ) X ) ) |
88 |
86 87
|
oveq12d |
|- ( k = 1 -> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) X ) ) = ( ( C ` 1 ) .x. ( 1 ( .g ` ( mulGrp ` R ) ) X ) ) ) |
89 |
3 6 85 88
|
gsumpr |
|- ( ( R e. CMnd /\ ( 0 e. NN0 /\ 1 e. NN0 /\ 0 =/= 1 ) /\ ( ( ( C ` 0 ) .x. ( 0 ( .g ` ( mulGrp ` R ) ) X ) ) e. K /\ ( ( C ` 1 ) .x. ( 1 ( .g ` ( mulGrp ` R ) ) X ) ) e. K ) ) -> ( R gsum ( k e. { 0 , 1 } |-> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) X ) ) ) ) = ( ( ( C ` 0 ) .x. ( 0 ( .g ` ( mulGrp ` R ) ) X ) ) .+ ( ( C ` 1 ) .x. ( 1 ( .g ` ( mulGrp ` R ) ) X ) ) ) ) |
90 |
25 71 72 74 78 82 89
|
syl132anc |
|- ( ph -> ( R gsum ( k e. { 0 , 1 } |-> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) X ) ) ) ) = ( ( ( C ` 0 ) .x. ( 0 ( .g ` ( mulGrp ` R ) ) X ) ) .+ ( ( C ` 1 ) .x. ( 1 ( .g ` ( mulGrp ` R ) ) X ) ) ) ) |
91 |
12
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> M e. U ) |
92 |
|
2eluzge0 |
|- 2 e. ( ZZ>= ` 0 ) |
93 |
|
uzss |
|- ( 2 e. ( ZZ>= ` 0 ) -> ( ZZ>= ` 2 ) C_ ( ZZ>= ` 0 ) ) |
94 |
92 93
|
ax-mp |
|- ( ZZ>= ` 2 ) C_ ( ZZ>= ` 0 ) |
95 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
96 |
94 95
|
sseqtrri |
|- ( ZZ>= ` 2 ) C_ NN0 |
97 |
96
|
a1i |
|- ( ph -> ( ZZ>= ` 2 ) C_ NN0 ) |
98 |
97
|
sselda |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> k e. NN0 ) |
99 |
13
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( D ` M ) = 1 ) |
100 |
|
eluz2gt1 |
|- ( k e. ( ZZ>= ` 2 ) -> 1 < k ) |
101 |
100
|
adantl |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> 1 < k ) |
102 |
99 101
|
eqbrtrd |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( D ` M ) < k ) |
103 |
8 1 4 23 7
|
deg1lt |
|- ( ( M e. U /\ k e. NN0 /\ ( D ` M ) < k ) -> ( C ` k ) = ( 0g ` R ) ) |
104 |
91 98 102 103
|
syl3anc |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( C ` k ) = ( 0g ` R ) ) |
105 |
104
|
oveq1d |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) X ) ) = ( ( 0g ` R ) .x. ( k ( .g ` ( mulGrp ` R ) ) X ) ) ) |
106 |
24
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> R e. Ring ) |
107 |
106 33
|
syl |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( mulGrp ` R ) e. Mnd ) |
108 |
14
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> X e. K ) |
109 |
32 19 107 98 108
|
mulgnn0cld |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( k ( .g ` ( mulGrp ` R ) ) X ) e. K ) |
110 |
3 5 23 106 109
|
ringlzd |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( ( 0g ` R ) .x. ( k ( .g ` ( mulGrp ` R ) ) X ) ) = ( 0g ` R ) ) |
111 |
105 110
|
eqtrd |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) X ) ) = ( 0g ` R ) ) |
112 |
111
|
mpteq2dva |
|- ( ph -> ( k e. ( ZZ>= ` 2 ) |-> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) X ) ) ) = ( k e. ( ZZ>= ` 2 ) |-> ( 0g ` R ) ) ) |
113 |
112
|
oveq2d |
|- ( ph -> ( R gsum ( k e. ( ZZ>= ` 2 ) |-> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) X ) ) ) ) = ( R gsum ( k e. ( ZZ>= ` 2 ) |-> ( 0g ` R ) ) ) ) |
114 |
90 113
|
oveq12d |
|- ( ph -> ( ( R gsum ( k e. { 0 , 1 } |-> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) X ) ) ) ) .+ ( R gsum ( k e. ( ZZ>= ` 2 ) |-> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) X ) ) ) ) ) = ( ( ( ( C ` 0 ) .x. ( 0 ( .g ` ( mulGrp ` R ) ) X ) ) .+ ( ( C ` 1 ) .x. ( 1 ( .g ` ( mulGrp ` R ) ) X ) ) ) .+ ( R gsum ( k e. ( ZZ>= ` 2 ) |-> ( 0g ` R ) ) ) ) ) |
115 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
116 |
10 76
|
eqeltrid |
|- ( ph -> B e. K ) |
117 |
3 5 115 24 116
|
ringridmd |
|- ( ph -> ( B .x. ( 1r ` R ) ) = B ) |
118 |
117
|
oveq1d |
|- ( ph -> ( ( B .x. ( 1r ` R ) ) .+ ( A .x. X ) ) = ( B .+ ( A .x. X ) ) ) |
119 |
10
|
a1i |
|- ( ph -> B = ( C ` 0 ) ) |
120 |
31 115
|
ringidval |
|- ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) |
121 |
32 120 19
|
mulg0 |
|- ( X e. K -> ( 0 ( .g ` ( mulGrp ` R ) ) X ) = ( 1r ` R ) ) |
122 |
14 121
|
syl |
|- ( ph -> ( 0 ( .g ` ( mulGrp ` R ) ) X ) = ( 1r ` R ) ) |
123 |
122
|
eqcomd |
|- ( ph -> ( 1r ` R ) = ( 0 ( .g ` ( mulGrp ` R ) ) X ) ) |
124 |
119 123
|
oveq12d |
|- ( ph -> ( B .x. ( 1r ` R ) ) = ( ( C ` 0 ) .x. ( 0 ( .g ` ( mulGrp ` R ) ) X ) ) ) |
125 |
9
|
a1i |
|- ( ph -> A = ( C ` 1 ) ) |
126 |
32 19
|
mulg1 |
|- ( X e. K -> ( 1 ( .g ` ( mulGrp ` R ) ) X ) = X ) |
127 |
14 126
|
syl |
|- ( ph -> ( 1 ( .g ` ( mulGrp ` R ) ) X ) = X ) |
128 |
127
|
eqcomd |
|- ( ph -> X = ( 1 ( .g ` ( mulGrp ` R ) ) X ) ) |
129 |
125 128
|
oveq12d |
|- ( ph -> ( A .x. X ) = ( ( C ` 1 ) .x. ( 1 ( .g ` ( mulGrp ` R ) ) X ) ) ) |
130 |
124 129
|
oveq12d |
|- ( ph -> ( ( B .x. ( 1r ` R ) ) .+ ( A .x. X ) ) = ( ( ( C ` 0 ) .x. ( 0 ( .g ` ( mulGrp ` R ) ) X ) ) .+ ( ( C ` 1 ) .x. ( 1 ( .g ` ( mulGrp ` R ) ) X ) ) ) ) |
131 |
9 80
|
eqeltrid |
|- ( ph -> A e. K ) |
132 |
3 5 24 131 14
|
ringcld |
|- ( ph -> ( A .x. X ) e. K ) |
133 |
3 6
|
ringcom |
|- ( ( R e. Ring /\ B e. K /\ ( A .x. X ) e. K ) -> ( B .+ ( A .x. X ) ) = ( ( A .x. X ) .+ B ) ) |
134 |
24 116 132 133
|
syl3anc |
|- ( ph -> ( B .+ ( A .x. X ) ) = ( ( A .x. X ) .+ B ) ) |
135 |
118 130 134
|
3eqtr3d |
|- ( ph -> ( ( ( C ` 0 ) .x. ( 0 ( .g ` ( mulGrp ` R ) ) X ) ) .+ ( ( C ` 1 ) .x. ( 1 ( .g ` ( mulGrp ` R ) ) X ) ) ) = ( ( A .x. X ) .+ B ) ) |
136 |
11
|
crnggrpd |
|- ( ph -> R e. Grp ) |
137 |
136
|
grpmndd |
|- ( ph -> R e. Mnd ) |
138 |
|
fvexd |
|- ( ph -> ( ZZ>= ` 2 ) e. _V ) |
139 |
23
|
gsumz |
|- ( ( R e. Mnd /\ ( ZZ>= ` 2 ) e. _V ) -> ( R gsum ( k e. ( ZZ>= ` 2 ) |-> ( 0g ` R ) ) ) = ( 0g ` R ) ) |
140 |
137 138 139
|
syl2anc |
|- ( ph -> ( R gsum ( k e. ( ZZ>= ` 2 ) |-> ( 0g ` R ) ) ) = ( 0g ` R ) ) |
141 |
135 140
|
oveq12d |
|- ( ph -> ( ( ( ( C ` 0 ) .x. ( 0 ( .g ` ( mulGrp ` R ) ) X ) ) .+ ( ( C ` 1 ) .x. ( 1 ( .g ` ( mulGrp ` R ) ) X ) ) ) .+ ( R gsum ( k e. ( ZZ>= ` 2 ) |-> ( 0g ` R ) ) ) ) = ( ( ( A .x. X ) .+ B ) .+ ( 0g ` R ) ) ) |
142 |
3 6 136 132 116
|
grpcld |
|- ( ph -> ( ( A .x. X ) .+ B ) e. K ) |
143 |
3 6 23 136 142
|
grpridd |
|- ( ph -> ( ( ( A .x. X ) .+ B ) .+ ( 0g ` R ) ) = ( ( A .x. X ) .+ B ) ) |
144 |
114 141 143
|
3eqtrd |
|- ( ph -> ( ( R gsum ( k e. { 0 , 1 } |-> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) X ) ) ) ) .+ ( R gsum ( k e. ( ZZ>= ` 2 ) |-> ( ( C ` k ) .x. ( k ( .g ` ( mulGrp ` R ) ) X ) ) ) ) ) = ( ( A .x. X ) .+ B ) ) |
145 |
22 69 144
|
3eqtrd |
|- ( ph -> ( ( O ` M ) ` X ) = ( ( A .x. X ) .+ B ) ) |