Metamath Proof Explorer


Theorem evl1deg1

Description: Evaluation of a univariate polynomial of degree 1. (Contributed by Thierry Arnoux, 8-Jun-2025)

Ref Expression
Hypotheses evl1deg1.1 P = Poly 1 R
evl1deg1.2 O = eval 1 R
evl1deg1.3 K = Base R
evl1deg1.4 U = Base P
evl1deg1.5 · ˙ = R
evl1deg1.6 + ˙ = + R
evl1deg1.7 C = coe 1 M
evl1deg1.8 D = deg 1 R
evl1deg1.9 A = C 1
evl1deg1.10 B = C 0
evl1deg1.11 φ R CRing
evl1deg1.12 φ M U
evl1deg1.13 φ D M = 1
evl1deg1.14 φ X K
Assertion evl1deg1 φ O M X = A · ˙ X + ˙ B

Proof

Step Hyp Ref Expression
1 evl1deg1.1 P = Poly 1 R
2 evl1deg1.2 O = eval 1 R
3 evl1deg1.3 K = Base R
4 evl1deg1.4 U = Base P
5 evl1deg1.5 · ˙ = R
6 evl1deg1.6 + ˙ = + R
7 evl1deg1.7 C = coe 1 M
8 evl1deg1.8 D = deg 1 R
9 evl1deg1.9 A = C 1
10 evl1deg1.10 B = C 0
11 evl1deg1.11 φ R CRing
12 evl1deg1.12 φ M U
13 evl1deg1.13 φ D M = 1
14 evl1deg1.14 φ X K
15 oveq2 x = X k mulGrp R x = k mulGrp R X
16 15 oveq2d x = X C k · ˙ k mulGrp R x = C k · ˙ k mulGrp R X
17 16 mpteq2dv x = X k 0 C k · ˙ k mulGrp R x = k 0 C k · ˙ k mulGrp R X
18 17 oveq2d x = X R k 0 C k · ˙ k mulGrp R x = R k 0 C k · ˙ k mulGrp R X
19 eqid mulGrp R = mulGrp R
20 2 1 3 4 11 12 5 19 7 evl1fpws φ O M = x K R k 0 C k · ˙ k mulGrp R x
21 ovexd φ R k 0 C k · ˙ k mulGrp R X V
22 18 20 14 21 fvmptd4 φ O M X = R k 0 C k · ˙ k mulGrp R X
23 eqid 0 R = 0 R
24 11 crngringd φ R Ring
25 24 ringcmnd φ R CMnd
26 nn0ex 0 V
27 26 a1i φ 0 V
28 24 adantr φ k 0 R Ring
29 7 4 1 3 coe1fvalcl M U k 0 C k K
30 12 29 sylan φ k 0 C k K
31 eqid mulGrp R = mulGrp R
32 31 3 mgpbas K = Base mulGrp R
33 31 ringmgp R Ring mulGrp R Mnd
34 24 33 syl φ mulGrp R Mnd
35 34 adantr φ k 0 mulGrp R Mnd
36 simpr φ k 0 k 0
37 14 adantr φ k 0 X K
38 32 19 35 36 37 mulgnn0cld φ k 0 k mulGrp R X K
39 3 5 28 30 38 ringcld φ k 0 C k · ˙ k mulGrp R X K
40 fvexd φ 0 R V
41 fveq2 k = j C k = C j
42 oveq1 k = j k mulGrp R X = j mulGrp R X
43 41 42 oveq12d k = j C k · ˙ k mulGrp R X = C j · ˙ j mulGrp R X
44 breq1 i = D M i < j D M < j
45 44 imbi1d i = D M i < j C j · ˙ j mulGrp R X = 0 R D M < j C j · ˙ j mulGrp R X = 0 R
46 45 ralbidv i = D M j 0 i < j C j · ˙ j mulGrp R X = 0 R j 0 D M < j C j · ˙ j mulGrp R X = 0 R
47 1nn0 1 0
48 13 47 eqeltrdi φ D M 0
49 12 ad2antrr φ j 0 D M < j M U
50 simplr φ j 0 D M < j j 0
51 simpr φ j 0 D M < j D M < j
52 8 1 4 23 7 deg1lt M U j 0 D M < j C j = 0 R
53 49 50 51 52 syl3anc φ j 0 D M < j C j = 0 R
54 53 oveq1d φ j 0 D M < j C j · ˙ j mulGrp R X = 0 R · ˙ j mulGrp R X
55 24 ad2antrr φ j 0 D M < j R Ring
56 55 33 syl φ j 0 D M < j mulGrp R Mnd
57 14 ad2antrr φ j 0 D M < j X K
58 32 19 56 50 57 mulgnn0cld φ j 0 D M < j j mulGrp R X K
59 3 5 23 55 58 ringlzd φ j 0 D M < j 0 R · ˙ j mulGrp R X = 0 R
60 54 59 eqtrd φ j 0 D M < j C j · ˙ j mulGrp R X = 0 R
61 60 ex φ j 0 D M < j C j · ˙ j mulGrp R X = 0 R
62 61 ralrimiva φ j 0 D M < j C j · ˙ j mulGrp R X = 0 R
63 46 48 62 rspcedvdw φ i 0 j 0 i < j C j · ˙ j mulGrp R X = 0 R
64 40 39 43 63 mptnn0fsuppd φ finSupp 0 R k 0 C k · ˙ k mulGrp R X
65 nn0disj01 0 1 2 =
66 65 a1i φ 0 1 2 =
67 nn0split01 0 = 0 1 2
68 67 a1i φ 0 = 0 1 2
69 3 23 6 25 27 39 64 66 68 gsumsplit2 φ R k 0 C k · ˙ k mulGrp R X = R k 0 1 C k · ˙ k mulGrp R X + ˙ R k 2 C k · ˙ k mulGrp R X
70 0nn0 0 0
71 70 a1i φ 0 0
72 47 a1i φ 1 0
73 0ne1 0 1
74 73 a1i φ 0 1
75 7 4 1 3 coe1fvalcl M U 0 0 C 0 K
76 12 70 75 sylancl φ C 0 K
77 32 19 34 71 14 mulgnn0cld φ 0 mulGrp R X K
78 3 5 24 76 77 ringcld φ C 0 · ˙ 0 mulGrp R X K
79 7 4 1 3 coe1fvalcl M U 1 0 C 1 K
80 12 47 79 sylancl φ C 1 K
81 32 19 34 72 14 mulgnn0cld φ 1 mulGrp R X K
82 3 5 24 80 81 ringcld φ C 1 · ˙ 1 mulGrp R X K
83 fveq2 k = 0 C k = C 0
84 oveq1 k = 0 k mulGrp R X = 0 mulGrp R X
85 83 84 oveq12d k = 0 C k · ˙ k mulGrp R X = C 0 · ˙ 0 mulGrp R X
86 fveq2 k = 1 C k = C 1
87 oveq1 k = 1 k mulGrp R X = 1 mulGrp R X
88 86 87 oveq12d k = 1 C k · ˙ k mulGrp R X = C 1 · ˙ 1 mulGrp R X
89 3 6 85 88 gsumpr R CMnd 0 0 1 0 0 1 C 0 · ˙ 0 mulGrp R X K C 1 · ˙ 1 mulGrp R X K R k 0 1 C k · ˙ k mulGrp R X = C 0 · ˙ 0 mulGrp R X + ˙ C 1 · ˙ 1 mulGrp R X
90 25 71 72 74 78 82 89 syl132anc φ R k 0 1 C k · ˙ k mulGrp R X = C 0 · ˙ 0 mulGrp R X + ˙ C 1 · ˙ 1 mulGrp R X
91 12 adantr φ k 2 M U
92 2eluzge0 2 0
93 uzss 2 0 2 0
94 92 93 ax-mp 2 0
95 nn0uz 0 = 0
96 94 95 sseqtrri 2 0
97 96 a1i φ 2 0
98 97 sselda φ k 2 k 0
99 13 adantr φ k 2 D M = 1
100 eluz2gt1 k 2 1 < k
101 100 adantl φ k 2 1 < k
102 99 101 eqbrtrd φ k 2 D M < k
103 8 1 4 23 7 deg1lt M U k 0 D M < k C k = 0 R
104 91 98 102 103 syl3anc φ k 2 C k = 0 R
105 104 oveq1d φ k 2 C k · ˙ k mulGrp R X = 0 R · ˙ k mulGrp R X
106 24 adantr φ k 2 R Ring
107 106 33 syl φ k 2 mulGrp R Mnd
108 14 adantr φ k 2 X K
109 32 19 107 98 108 mulgnn0cld φ k 2 k mulGrp R X K
110 3 5 23 106 109 ringlzd φ k 2 0 R · ˙ k mulGrp R X = 0 R
111 105 110 eqtrd φ k 2 C k · ˙ k mulGrp R X = 0 R
112 111 mpteq2dva φ k 2 C k · ˙ k mulGrp R X = k 2 0 R
113 112 oveq2d φ R k 2 C k · ˙ k mulGrp R X = R k 2 0 R
114 90 113 oveq12d φ R k 0 1 C k · ˙ k mulGrp R X + ˙ R k 2 C k · ˙ k mulGrp R X = C 0 · ˙ 0 mulGrp R X + ˙ C 1 · ˙ 1 mulGrp R X + ˙ R k 2 0 R
115 eqid 1 R = 1 R
116 10 76 eqeltrid φ B K
117 3 5 115 24 116 ringridmd φ B · ˙ 1 R = B
118 117 oveq1d φ B · ˙ 1 R + ˙ A · ˙ X = B + ˙ A · ˙ X
119 10 a1i φ B = C 0
120 31 115 ringidval 1 R = 0 mulGrp R
121 32 120 19 mulg0 X K 0 mulGrp R X = 1 R
122 14 121 syl φ 0 mulGrp R X = 1 R
123 122 eqcomd φ 1 R = 0 mulGrp R X
124 119 123 oveq12d φ B · ˙ 1 R = C 0 · ˙ 0 mulGrp R X
125 9 a1i φ A = C 1
126 32 19 mulg1 X K 1 mulGrp R X = X
127 14 126 syl φ 1 mulGrp R X = X
128 127 eqcomd φ X = 1 mulGrp R X
129 125 128 oveq12d φ A · ˙ X = C 1 · ˙ 1 mulGrp R X
130 124 129 oveq12d φ B · ˙ 1 R + ˙ A · ˙ X = C 0 · ˙ 0 mulGrp R X + ˙ C 1 · ˙ 1 mulGrp R X
131 9 80 eqeltrid φ A K
132 3 5 24 131 14 ringcld φ A · ˙ X K
133 3 6 ringcom R Ring B K A · ˙ X K B + ˙ A · ˙ X = A · ˙ X + ˙ B
134 24 116 132 133 syl3anc φ B + ˙ A · ˙ X = A · ˙ X + ˙ B
135 118 130 134 3eqtr3d φ C 0 · ˙ 0 mulGrp R X + ˙ C 1 · ˙ 1 mulGrp R X = A · ˙ X + ˙ B
136 11 crnggrpd φ R Grp
137 136 grpmndd φ R Mnd
138 fvexd φ 2 V
139 23 gsumz R Mnd 2 V R k 2 0 R = 0 R
140 137 138 139 syl2anc φ R k 2 0 R = 0 R
141 135 140 oveq12d φ C 0 · ˙ 0 mulGrp R X + ˙ C 1 · ˙ 1 mulGrp R X + ˙ R k 2 0 R = A · ˙ X + ˙ B + ˙ 0 R
142 3 6 136 132 116 grpcld φ A · ˙ X + ˙ B K
143 3 6 23 136 142 grpridd φ A · ˙ X + ˙ B + ˙ 0 R = A · ˙ X + ˙ B
144 114 141 143 3eqtrd φ R k 0 1 C k · ˙ k mulGrp R X + ˙ R k 2 C k · ˙ k mulGrp R X = A · ˙ X + ˙ B
145 22 69 144 3eqtrd φ O M X = A · ˙ X + ˙ B