Metamath Proof Explorer


Theorem fvmptd4

Description: Deduction version of fvmpt (where the substitution hypothesis does not have the antecedent ph ). (Contributed by SN, 26-Jul-2024)

Ref Expression
Hypotheses fvmptd4.1 x = A B = C
fvmptd4.2 φ F = x D B
fvmptd4.3 φ A D
fvmptd4.4 φ C V
Assertion fvmptd4 φ F A = C

Proof

Step Hyp Ref Expression
1 fvmptd4.1 x = A B = C
2 fvmptd4.2 φ F = x D B
3 fvmptd4.3 φ A D
4 fvmptd4.4 φ C V
5 1 adantl φ x = A B = C
6 2 5 3 4 fvmptd φ F A = C