Metamath Proof Explorer


Theorem fvmptd4

Description: Deduction version of fvmpt (where the substitution hypothesis does not have the antecedent ph ). (Contributed by SN, 26-Jul-2024)

Ref Expression
Hypotheses fvmptd4.1 x=AB=C
fvmptd4.2 φF=xDB
fvmptd4.3 φAD
fvmptd4.4 φCV
Assertion fvmptd4 φFA=C

Proof

Step Hyp Ref Expression
1 fvmptd4.1 x=AB=C
2 fvmptd4.2 φF=xDB
3 fvmptd4.3 φAD
4 fvmptd4.4 φCV
5 1 adantl φx=AB=C
6 2 5 3 4 fvmptd φFA=C